Objective: This study was undertaken to analyze phenotypic features of a cohort of patients with protracted CLN3 disease to improve recognition of the disorder.
Methods: We analyzed phenotypic data of 10 patients from six families with protracted CLN3 disease. Haplotype analysis was performed in three reportedly unrelated families.
Results: Visual impairment was the initial symptom, with onset at 5-9 years, similar to classic CLN3 disease. Mean time from onset of visual impairment to seizures was 12 years (range = 6-41 years). Various seizure types were reported, most commonly generalized tonic-clonic seizures; focal seizures were present in four patients. Progressive myoclonus epilepsy was not seen. Interictal electroencephalogram revealed mild background slowing and 2.5-3.5-Hz spontaneous generalized spike-wave discharges. Additional interictal focal epileptiform discharges were noted in some patients. Age at death for the three deceased patients was 31, 31, and 52 years. Molecular testing revealed five individuals were homozygous for c.461-280_677 + 382del966, the "common 1-kb" CLN3 deletion. The remaining individuals were compound heterozygous for various combinations of recurrent pathogenic CLN3 variants. Haplotype analysis demonstrated evidence of a common founder for the common 1-kb deletion. Dating analysis suggested the deletion arose approximately 1500 years ago and thus did not represent cryptic familial relationship in this Australian cohort.
Significance: We highlight the protracted phenotype of a disease generally associated with death in adolescence, which is a combined focal and generalized epilepsy syndrome with progressive neurological deterioration. The disorder should be suspected in an adolescent or adult patient presenting with generalized or focal seizures preceded by progressive visual loss. The common 1-kb deletion has been typically associated with classic CLN3 disease, and the protracted phenotype has not previously been reported with this genotype. This suggests that modifying genetic factors may be important in determining this somewhat milder phenotype and identification of these factors should be the subject of future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952944 | PMC |
http://dx.doi.org/10.1111/epi.17616 | DOI Listing |
J Clin Invest
December 2024
Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Lysosomes are implicated in a wide spectrum of human diseases including monogenic lysosomal storage disorders (LSDs), age-associated neurodegeneration and cancer. Profiling lysosomal content using tag-based lysosomal immunoprecipitation (LysoTagIP) in cell and animal models has substantially moved the field forward, but studying lysosomal dysfunction in human patients remains challenging. Here, we report the development of the 'tagless LysoIP' method, designed to enable the rapid enrichment of lysosomes, via immunoprecipitation, using the endogenous integral lysosomal membrane protein TMEM192, directly from clinical samples and human cell lines (e.
View Article and Find Full Text PDFMol Vis
November 2024
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab. Beijing, China.
Purpose: The neuronal ceroid lipofuscinoses (NCLs) comprise a group of inherited neurodegenerative disorders with thirteen NCL-disease causing genes ceroid lipofuscinosis neuronal ( identified. The purpose of this study was to describe the genetic and clinical characteristics of a cohort of Chinese patients harboring biallelic variants in the genes.
Methods: We recruited 14 patients from 13 unrelated families who carried biallelic variants in the genes.
Invest Ophthalmol Vis Sci
November 2024
Department of Ophthalmology, University of Rochester, Rochester, New York, United States.
Stem Cells Transl Med
October 2024
Division of Pediatric Transplant and Cellular Therapy, Duke University, 2400 Pratt Street, Box 102502, Durham, NC 27705, United States.
Commun Biol
October 2024
Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.
Loss-of-function mutations in CLN3 cause juvenile Batten disease, featuring neurodegeneration and early-stage neuroinflammation. How loss of CLN3 function leads to early neuroinflammation is not yet understood. Here, we have comprehensively studied microglia from Cln3 mice, a genetically accurate disease model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!