Chem Commun (Camb)
Frontiers of Innovative Research in Science and Technology, Konan university, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
Published: April 2023
Structural selectivity of G-quadruplex ligands is essential for cellular applications since there is an excess of nucleic acids forming duplex structures compared to G-quadruplex structures in living cells. In this study, we developed new structure-selective G-quadruplex ligands utilizing a simple and fast screening system. The affinity, selectivity, enzymatic inhibitory activity and cytotoxicity of the structure-selective G-quadruplex ligands were demonstrated along with a structural selectivity-cytotoxicity relationship of G-quadruplex ligands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cc00556a | DOI Listing |
Molecules
December 2024
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
G-quadruplex (G4), an important secondary structure of nucleic acids, is polymorphic in structure. G4 monomers can associate with each other to form multimers, which show better application performance than monomers in some aspects. G4 dimers, the simplest and most widespread multimeric structures, are often used as a representative for studying multimers.
View Article and Find Full Text PDFMolecules
December 2024
Departamento de Bioquímica y Farmacología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento 17, 18016 Armilla, Spain.
G-quadruplexes (G4s) are non-canonical secondary structures that play a crucial role in the regulation of genetic expression. This study explores the interaction between G4s and a small family of oligostyrylbenzene (OSB) derivatives, characterized by tris(styryl)benzene and tetrastyrylbenzene backbones, functionalized with either trimethylammonium or 1-methylpyridinium groups. Initially identified as DNA ligands, these OSB derivatives have now been recognized as potent G4 binders, surpassing in binding affinity commercially available ligands such as pyridostatin and displaying good selectivity for G4s over duplex DNA.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
Cancer is a leading cause of death, so continuous efforts into cancer therapy are imperative. In tumor cells, telomerase and oncogene activity are key points for uncontrolled cell growth. Targeting these processes with ligands that inhibit telomerase and/or reduce oncogene expression has been identified as a promising cancer therapy.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Pharmacy, University of Naples Federico II, Naples, 80131, Italy.
KHSRP (KH-type splicing regulatory protein) is a multifunctional nucleic acid-binding protein that regulates various cellular processes, with critical roles in controlling gene expression. G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in essential cellular activities, including gene expression, and are recognized as potential therapeutic targets in cancer. The biological functions of G4s are mediated by proteins making their formation highly dynamic within cells.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czechia.
Impaired fibroblast growth factor receptor (FGFR) signaling is associated with many human conditions, including growth disorders, degenerative diseases, and cancer. Current FGFR therapeutics are based on chemical inhibitors of FGFR tyrosine kinase activity (TKIs). However, FGFR TKIs are limited in their target specificity as they generally inhibit all FGFRs and other receptor tyrosine kinases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.