This study encapsulated walnut angiotensin-converting enzyme (ACE) inhibitory peptides within nanoliposomes and then modified them with chitosan. The resulting effect of the nanoliposome loading and chitosan coating on physicochemical characteristics, stability, bioactivity, chemical structure, and morphology of the encapsulated peptides was assessed. The resulting particle size and polymer dispersity index revealed that the chitosan-coated nanoliposomes loaded with walnut ACE inhibitory peptides (WAIP) (CL-P) exhibited higher physical stability compared with the nanoliposomes loaded with WAIP (L-P). The encapsulation efficiency (EE) of CL-P increased from 73.32% to 76.13% after chitosan modification, and the EE of L-P and CL-P could be maintained by storage at 4°C. In addition, the antioxidant activity and ACE inhibitory activity of the peptides were effectively protected by L-P and CL-P during storage. Fourier transform infrared spectroscopy showed that the nanoliposomes were bound in ionic form with both the peptides and chitosan. Transmission electron micrographs indicated the presence of vesicle-like carriers with a reservoir-type structure. This study highlights the potential of nanoliposomes and their modification with chitosan to increase the stability and bioactivity retention of ACE inhibitory peptides. PRACTICAL APPLICATION: Chitosan-coated nanoliposomes loaded with walnut ACE inhibitory peptides were prepared in this study. Chitosan coating increased nanoliposomes' encapsulation efficiency and provided higher physical stability. In addition, the bioactivity of the walnut ACE peptides was effectively protected during storage. This study was relevant for improving the storage and transportation used for nanoliposome systems applied in the food and health product industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.16562 | DOI Listing |
Nutrients
December 2024
Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
Food protein-derived antihypertensive peptides have attracted substantial attention as a safer alternative for drugs. The regulation of the renin-angiotensin system (RAS) is an essential aspect underlying the mechanisms of antihypertensive peptides. Most of the identified antihypertensive peptides exhibit the angiotensin-converting enzyme (ACE) inhibitory effect.
View Article and Find Full Text PDFFoods
December 2024
School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells.
View Article and Find Full Text PDFJ Food Sci
January 2025
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China.
Hypertension is a major risk factor for many cardiovascular diseases, which can lead to kidney and heart disease, stroke, and premature death. Inhibiting angiotensin-converting enzyme (ACE) activity is an effective method to relieve hypertension. Previously, we screened an active peptide KYPHVF (KF6) from Boletus griseus-Hypomyces chrysospermus with excellent ACE inhibitory activity.
View Article and Find Full Text PDFFood Res Int
January 2025
The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand.
Faba bean (Vicia faba L.) offers a rich nutritional profile with high protein content and abundant vitamins and minerals. Processing of faba beans for freezing requires blanching, yielding liluva (legume processing water), possibly containing leached macronutrients, with potential for upcycling.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Food Science & Technology, Yunnan Agricultural University institution, Kunming, Yunnan 650201, China.
This study aimed to investigate the changes in the bioactive peptides (BPs) of buffalo milk cheese (BMC) within 15 days of storage. A total of 3605 peptides were identified in the BMC, with 260 peptides remaining stable for 15 days. Among these, the peak intensities of all reported BPs (9 peptides) increased on the 15th day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!