A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experimental and Modeling Studies of Local and Nanoscale -Cresol Behavior: A Comparison of Classical Force Fields. | LitMetric

The dynamics of bulk liquid -cresol from 340-390 K was probed using a tandem quasielastic neutron scattering (QENS) and molecular dynamics (MD) approach, due to its relevance as a simple model component of lignin pyrolysis oil. QENS experiments observed both translational jump diffusion and isotropic rotation, with diffusion coefficients ranging from 10.1 to 28.6 × 10 ms and rotational rates from 5.7 to 9.2 × 10 s. The associated activation energies were 22.7 ± 0.6 and 10.1 ± 1.2 kJmol for the two different dynamics. MD simulations applying two different force field models (OPLS3 and OPLS2005) gave values close to the experimental diffusion coefficients and rotational rates obtained upon calculating the incoherent dynamic structure factor from the simulations over the same time scale probed by the QENS spectrometer. The simulations gave resulting jump diffusion coefficients that were slower by factors of 2.0 and 3.8 and rates of rotation that were slower by factors of 1.2 and 1.6. Comparing the two force field sets, the OPLS3 model showed slower rates of dynamics likely due to a higher molecular polarity, leading to greater quantities and strengths of hydrogen bonding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123653PMC
http://dx.doi.org/10.1021/acs.jpca.2c08022DOI Listing

Publication Analysis

Top Keywords

diffusion coefficients
12
jump diffusion
8
rotational rates
8
force field
8
slower factors
8
experimental modeling
4
modeling studies
4
studies local
4
local nanoscale
4
nanoscale -cresol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!