Emulsions are ubiquitous in many consumer products, including food, cosmetics and pharmaceuticals. Whilst their macroscopic characterisation is well-established, understanding their microscopic behaviour is very challenging. In our previous work we investigated oil-in-water emulsions by studying the effect of water on structuring and dynamics of such systems. In the present work, we investigate the effect of surfactant concentration on microstructure and diffusion within the water-in-oil emulsion system by using low-field pulsed-field gradient (PFG) NMR studies carried out with a benchtop NMR instrument, in conjunction with optical imaging. The results reveal that at high surfactant concentration the formation of smaller droplets gives rise to a third component in the PFG NMR attenuation plot, which is mostly attributed to restricted diffusion near the droplet boundaries. In addition, structuring effects due to increase in surfactant concentration at the boundaries could also contribute to further slowing down water diffusion at the boundaries. As the surfactant concentration decreases, the average droplet size becomes larger and both restriction and structuring effects at the droplet boundaries become less significant, as suggested by the PFG NMR plot, whereby the presence of a third diffusion component becomes less pronounced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3sm00113j | DOI Listing |
AAPS J
January 2025
Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Freeze drying is one of the common methods to extend the long-term stability of biologicals. Biological products in solid form have the advantages of convenient transportation and stable long-term storage. However, long reconstitution time and extensive visible bubbles are frequently generated during the reconstitution process for many freeze-dried protein formulations, which can potentially affect the management efficiency of staff, patient compliance, and product quality.
View Article and Find Full Text PDFLangmuir
January 2025
Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
The mechanism of the emulsion polymerization of styrene to polystyrene nanoparticles (PSNPs) remains a subject of debate. Herein, a series of reaction parameters with different surfactant concentrations, monomer contents, temperatures, and equilibration times were investigated to understand the formation mechanism of PSNPs, which demonstrate a correlation between the properties of PSNPs and the mesostructure of the premix. Cooling the model systems with self-emulsifying nanodroplets (SENDs) in the early reaction stages resulted in the hollow polystyrene spheres (H-PSSs), ruptured PSNPs, and dandelion-like PSNPs, further indicating that the oil nanodroplets are the key sites for the formation of PSNPs.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
Developing orally administered pediatric formulations presents significant challenges due to the unique characteristics of pediatric patients. Terbinafine hydrochloride (TER), a powerful antifungal agent, is effective against various fungal infections, including Tinea capitis, which is common in children. However, its low aqueous solubility necessitates innovative pharmaceutical strategies to enhance its effectiveness.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India.
The severe climate change has caused a drastic water level disparity around the globe, which eventually has been one of the biggest problems of this era related to land degradation. This has caused the multidimensional impact on ecology, the environment, and their components. Algae, one of the ancient micro-engineers, are involved in the functioning of soil microcosm.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States of America.
The administration of surfactant aerosol therapy to preterm infants receiving continuous positive airway pressure (CPAP) respiratory support is highly challenging due to small flow passages, relatively high ventilation flow rates, rapid breathing and small inhalation volumes. To overcome these challenges, the objective of this study was to implement a validated computational fluid dynamics (CFD) model and develop an overlay nasal prong interface design for use with CPAP respiratory support that enables high efficiency powder aerosol delivery to the lungs of preterm infants when needed (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!