A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neonatal exposure to hypoxia induces early arterial stiffening via activation of lysyl oxidases. | LitMetric

Hypoxia in the neonatal period is associated with early manifestations of adverse cardiovascular health in adulthood including higher risk of hypertension and atherosclerosis. We hypothesize that this occurs due to activation of lysyl oxidases (LOXs) and the remodeling of the large conduit vessels, leading to early arterial stiffening. Newborn C57Bl/6 mice were exposed to hypoxia (FiO  = 11.5%) from postnatal day 1 (P1) to postnatal day 11 (P11), followed by resumption of normoxia. Controls were maintained in normoxia. Using in vivo (pulse wave velocity; PWV) and ex vivo (tensile testing) arterial stiffness indexes, we determined that mice exposed to neonatal hypoxia had significantly higher arterial stiffness compared with normoxia controls by young adulthood (P60), and it increased further by P120. Echocardiography performed at P60 showed that mice exposed to hypoxia displayed a compensated dilated cardiomyopathy. Western blotting revelated that neonatal hypoxia accelerated age-related increase in LOXL2 protein expression in the aorta and elevated LOXL2 expression in the PA at P11 with a delayed decay toward normoxic controls. In the heart and lung, gene and protein expression of LOX/LOXL2 were upregulated at P11, with a delayed decay when compared to normoxic controls. Neonatal hypoxia results in a significant increase in arterial stiffness in early adulthood due to aberrant LOX/LOXL2 expression. This suggests an acceleration in the mechanical decline of the cardiovascular system, that contributes to increased risk of hypertension in young adults exposed to neonatal hypoxia that may increase susceptibility to further insults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086679PMC
http://dx.doi.org/10.14814/phy2.15656DOI Listing

Publication Analysis

Top Keywords

neonatal hypoxia
16
mice exposed
12
arterial stiffness
12
hypoxia
8
early arterial
8
arterial stiffening
8
activation lysyl
8
lysyl oxidases
8
risk hypertension
8
exposed hypoxia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!