Selenium nanoparticles (SeNPs) can be biosynthesized by most Lactic acid bacteria thereby converting toxic sodium into SeNPs. However, few studies have reported the antimicrobial activity of biogenic SeNPs against which are the main species of psychrotrophic bacteria in raw milk. This study reported the synthesis and characterization of SeNPs from ZK-AS 1.1482, and the antimicrobial mechanism against ATCC 13525. The synthesized SeNPs were amorphous with sizes ranging from 52 to 103 nm. Fourier transform infrared spectroscopy (FT-IR) spectra showed the presence of proteins, polysaccharides, and lipids on the surface of particles, which evidently stabilized the SeNPs structure and morphology. Energy-dispersive X-ray (EDX) analysis revealed that the nanoparticles contained selenium. In addition, the minimal inhibitory concentration (MIC) of SeNPs against ATCC 13525 was 0.1 mg ml and the biofilm inhibition rate was 43.52 ± 0.26%. SeNPs decreased the number of living bacteria observed by confocal laser scanning microscopy (CLSM). Meanwhile, after SeNPs treatment, the intracellular adenosine triphosphate (ATP) concentration and antioxidant enzyme activity decreased, the content of reactive oxygen species (ROS) and the malondialdehyde (MDA) content increased, and lipid peroxidation intensified. Real-time fluorescence quantitative PCR (RT-qPCR) assay showed that the expression of , , , , , , , and gene were down-regulated after SeNPs treatment. The and gene were significantly up-regulated, indicating that SeNPs could destroy the integrity of cell membrane and thus play an antimicrobial role. Biogenic SeNPs are expected to be developed as an efficient and novel antimicrobial agent for application in the food industry.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927014.2023.2199932DOI Listing

Publication Analysis

Top Keywords

senps
12
antimicrobial mechanism
8
selenium nanoparticles
8
biogenic senps
8
atcc 13525
8
senps treatment
8
evaluation antimicrobial
4
mechanism biogenic
4
biogenic selenium
4
nanoparticles selenium
4

Similar Publications

Anaerobic probiotics-in situ Se nanoradiosensitizers selectively anchor to tumor with immuno-regulations for robust cancer radio-immunotherapy.

Biomaterials

January 2025

Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:

Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.

View Article and Find Full Text PDF

Here, a high molecular weight polysaccharide preparation from Ophiocordyceps gracilis was utilized as a stabilizer and dispersant to create nanocomposites based on selenium nanoparticles (GSP-1a-SeNPs). The NPs showed the highest stability at a selenium/polysaccharide mass ratio of 1:1, with no significant change after 28 days of storage at 4 °C. The NPs exhibited a symmetrical spheroid structure with an average diameter of 85.

View Article and Find Full Text PDF

Fish face health hazards due to high-temperature (T) stress and the toxicity associated with nickel (Ni), both of which can occur in aquatic ecosystems. The accumulation of nickel in fish may pose risks to human health when contaminated fish are consumed. Consequently, the goal of this study was to clarify how selenium nanoparticles (Se-NPs) help Pangasianodon hypophthalmus by reducing the effects of nickel and high-temperature stress.

View Article and Find Full Text PDF

Background: Moringa peregrina, renowned for its extensive health benefits, continues to reveal its therapeutic potential through ongoing research. The synthesis of Moringa peregrina extract-selenium nanoparticles (MPE-SeNPs) has emerged as a promising approach in developing versatile therapeutic agents.

Objective: To evaluate the protective effects of MPE-SeNPs against oxidative damage and inflammation caused by HgCl2 exposure in mice.

View Article and Find Full Text PDF

Background: Recent advances in nanomedicine have derived novel prospects for development of various bioactive nanoparticles and nanocomposites with significant antibacterial and antifungal properties. This study aims to investigate some characteristics of the novel Se-NPs/CuO nanocomposite such as morphological, physicochemical, and optical properties, as well as to assess the antibacterial activity of this fabricated composite in different concentrations against some MDR Gram-positive and Gram-negative clinical bacterial isolates.

Methods: The Se-NPs/CuO nanocomposite was fabricated using the chemical deposition method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!