Ecological communities are increasingly subject to natural and human-induced additions of species, as species shift their ranges under climate change, are introduced for conservation and are unintentionally moved by humans. As such, decisions about how to manage ecosystems subject to species introductions and considering multiple management objectives need to be made. However, the impacts of gaining new species on ecological communities are difficult to predict due to uncertainty in introduced species characteristics, the novel interactions that will be produced by that species, and the recipient ecosystem structure. Drawing on ecological and conservation decision theory, we synthesise literature into a conceptual framework for species introduction decision-making based on ecological networks in high-uncertainty contexts. We demonstrate the application of this framework to a theoretical decision surrounding assisted migration considering both biodiversity and ecosystem service objectives. We show that this framework can be used to evaluate trade-offs between outcomes, predict worst-case scenarios, suggest when one should collect additional data, and allow for improving knowledge of the system over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ele.14212 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!