Aging associated defects within stem cell-supportive niches contribute towards age-related decline in stem cell activity. However, mechanisms underlying age-related niche defects, and whether restoring niche function can improve stem cell fitness, remain unclear. Here, we sought to determine whether aged blood stem cell function can be restored by rejuvenating their supportive niches within the bone marrow (BM). We identify Netrin-1 as a critical regulator of BM niche cell aging. Niche-specific deletion of Netrin-1 induces premature aging phenotypes within the BM microenvironment, while supplementation of aged mice with Netrin-1 rejuvenates aged niche cells and restores competitive fitness of aged blood stem cells to youthful levels. We show that Netrin-1 plays an essential role in maintaining active DNA damage responses (DDR), and that aging-associated decline in niche-derived Netrin-1 results in DNA damage accumulation within the BM microenvironment. We show that Netrin-1 supplementation is sufficient to resolve DNA damage and restore regenerative potential of the aged BM niche and blood stem cells to endure serial chemotherapy regimens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086043 | PMC |
http://dx.doi.org/10.1038/s41467-023-37783-4 | DOI Listing |
Nat Biotechnol
January 2025
Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany.
Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.
View Article and Find Full Text PDFCommun Biol
January 2025
Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.
Cellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
Anaplastic thyroid carcinoma (ATC) is an aggressive cancer that requirements rapid diagnosis and multimodal treatment. Next-generation sequencing (NGS) aids in personalized therapies and improved trial enrollment. The role of liquid-based NGS in ATC remains unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Middle-aged obesity, characterized by excessive fat accumulation and systemic energy imbalance, often precedes various health complications. Recent research has unveiled a surprising link between DNA damage response and energy metabolism. Here, we explore the role of Eepd1, a DNA repair enzyme, in regulating adipose tissue function and obesity onset.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy. Electronic address:
Nowadays, marine pollution is a global problem which finds in microplastics (MPs) and emerging pollutants, such as perfluoroalkyl substances (PFASs), two of the main culprits. Sea cucumbers are a group of marine benthic invertebrates that show ecological, economic and social relevance. As deposit/suspension feeders, sea cucumbers show high susceptibility to bioaccumulate marine pollutants, including PFASs and MPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!