Cognitive impairment is one of the most prevalent symptoms of post Severe Acute Respiratory Syndrome COronaVirus 2 (SARS-CoV-2) state, which is known as Long COVID. Advanced neuroimaging techniques may contribute to a better understanding of the pathophysiological brain changes and the underlying mechanisms in post-COVID-19 subjects. We aimed at investigating regional cerebral perfusion alterations in post-COVID-19 subjects who reported a subjective cognitive impairment after a mild SARS-CoV-2 infection, using a non-invasive Arterial Spin Labeling (ASL) MRI technique and analysis. Using MRI-ASL image processing, we investigated the brain perfusion alterations in 24 patients (53.0 ± 14.5 years, 15F/9M) with persistent cognitive complaints in the post COVID-19 period. Voxelwise and region-of-interest analyses were performed to identify statistically significant differences in cerebral blood flow (CBF) maps between post-COVID-19 patients, and age and sex matched healthy controls (54.8 ± 9.1 years, 13F/9M). The results showed a significant hypoperfusion in a widespread cerebral network in the post-COVID-19 group, predominantly affecting the frontal cortex, as well as the parietal and temporal cortex, as identified by a non-parametric permutation testing (p < 0.05, FWE-corrected with TFCE). The hypoperfusion areas identified in the right hemisphere regions were more extensive. These findings support the hypothesis of a large network dysfunction in post-COVID subjects with cognitive complaints. The non-invasive nature of the ASL-MRI method may play an important role in the monitoring and prognosis of post-COVID-19 subjects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086005PMC
http://dx.doi.org/10.1038/s41598-023-32275-3DOI Listing

Publication Analysis

Top Keywords

arterial spin
8
spin labeling
8
cognitive impairment
8
post-covid-19 subjects
8
perfusion alterations
8
post-covid-19
5
cerebral
4
cerebral hypoperfusion
4
hypoperfusion post-covid-19
4
post-covid-19 cognitively
4

Similar Publications

Background: Neurovascular coupling (NVC), as indicated by a comprehensive analysis of the amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), provides mechanistic insights into neurological disorders. Patients undergoing peritoneal dialysis (PD) and hemodialysis (HD) often face cognitive impairment, the causes of which are not fully understood.

Methods: ALFF was derived from functional magnetic resonance imaging, and CBF was quantified using arterial spin labeling in a cohort comprising 58 patients with PD, 60 patients with HD and 62 healthy controls.

View Article and Find Full Text PDF

Ischemic stroke is one of the major emergency diseases leading to death and disability worldwide, characterized by its acute onset and the urgent need for prompt medical intervention to reduce mortality and long-term disability. Chronic terminal internal carotid artery and/or middle cerebral artery occlusion (CTI/MCAO) is an important subtype of intracranial artery occlusive disease. The superficial temporal artery-to-MCA (STA-MCA) bypass has been proposed to improve cerebral blood flow (CBF) and cerebrovascular reserve (CVR), potentially enhancing neurological outcomes.

View Article and Find Full Text PDF

The prognostic impact of arterial spin labeling hyperperfusion in acute ischemic stroke: a systematic review and meta-analysis.

Acta Radiol

January 2025

Department of Radiology & Institute of Rehabilitation and Development of Brain Function, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, PR China.

Hyperperfusion is related to vessel recanalization, tissue reperfusion, and collateral circulation. To determine the prognostic impact of hyperperfusion after an acute ischemic stroke (AIS) identified by arterial spin labeling (ASL) cerebral blood flow. Studies published in PubMed, Embase, and Cochrane Library databases were searched.

View Article and Find Full Text PDF

Hemodynamic measurements such as cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) can provide useful information for the diagnosis and characterization of brain tumors. Previous work showed that arterial spin labeling (ASL) in combination with vasoactive stimulation enabled simultaneous non-invasive evaluation of both parameters, however this approach had not been previously tested in tumors. The aim of this work was to investigate the application of this technique, using a pseudo-continuous ASL (PCASL) sequence combined with breath-holding at 3 T, to measure CBF and CVR in high-grade gliomas and metastatic lesions, and to explore differences across tumoral-peritumoral regions and tumor types.

View Article and Find Full Text PDF

Background And Objective: Radiosurgery can serve as a primary, adjuvant, or salvage treatment modality for cavernous sinus tumors (CST), providing high tumor control. However, particularly with cavernous sinus expansion, there may be insufficient distance from the optic apparatus to perform radiosurgery safely. The internal carotid artery adjacent to the distal dural ring (ICAddr), when enhancing similarly to the CST, can be difficult to delineate, and can lead to over-contouring of target volume near the optic nerve and therefore increasing the risk of radiation-induced optic toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!