Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To understand higher brain function, we need to understand the cellular function in a cell-type-specific manner. In recent decades, cell manipulation techniques termed chemogenetics (e.g., DREADD) have enabled cell-type-specific control of nerve activity in vivo. These are powerful for elucidating brain function in live animals. However, artificially-designed receptors evoke unnatural cellular signals in these methods; thus, they may not reflect physiological responses. We have recently focused on "molecular-targeted chemogenetics," which allows the cell-type specific regulation of target endogenous receptors. This review describes our current results toward "molecular-targeted chemogenetics" along with the recent progress in cell manipulation techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11477/mf.1416202342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!