Different protein purification methods exist. Yet, they need to be adapted for specific downstream applications to maintain functional integrity of the recombinant proteins. This study established a purification protocol for lentiviral Vpx (viral protein X) and test its ability to degrade sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) ex vivo in resting CD4 T cells. For this purpose, we cloned a novel eukaryotic expression plasmid for Vpx including C-terminal 10x His- and HA-tags and confirmed that those tags did not alter the ability to degrade SAMHD1. We optimized purification conditions for Vpx produced in HEK293T cells with CHAPS as detergent and Co-NTA resins yielding the highest solubility and protein amounts. Size exclusion chromatography (SEC) further enhanced the purity of recombinant Vpx proteins. Importantly, nucleofection of resting CD4 T cells demonstrated that purified recombinant Vpx protein efficiently degraded SAMHD1 in a proteasome-dependent manner. In conclusion, this protocol is suitable for functional downstream applications of recombinant Vpx and might be transferrable to other recombinant proteins with similar functions/properties as lentiviral Vpx.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2023.115153DOI Listing

Publication Analysis

Top Keywords

lentiviral vpx
12
resting cd4
12
cd4 cells
12
recombinant vpx
12
purified recombinant
8
vpx
8
vpx proteins
8
downstream applications
8
recombinant proteins
8
ability degrade
8

Similar Publications

Novel Vpx virus-like particles to improve cytarabine treatment response against acute myeloid leukemia.

Clin Exp Med

July 2024

Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany.

Knowledge of the molecular pathogenesis of acute myeloid leukemia has advanced in recent years. Despite novel treatment options, acute myeloid leukemia remains a survival challenge for elderly patients. We have recently shown that the triphosphohydrolase SAMHD1 is one of the factors determining resistance to Ara-C treatment.

View Article and Find Full Text PDF

Optimized protocol for CRISPR knockout of human iPSC-derived macrophages.

STAR Protoc

March 2024

Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK. Electronic address:

Here, we present a protocol for lentiviral delivery of CRISPR-Cas9 to human induced pluripotent stem cell (iPSC)-derived macrophages using co-incubation with VPX virus-like particles (VPX-VLPs). We describe steps for producing polybrene and puromycin kill curves, VPX viral production, and VPX-VLP titration by western blotting. We then detail procedures for iPSC macrophage precursor lentiviral transduction and lentiviral CRISPR-Cas9-based knockout in iPSC-derived macrophages.

View Article and Find Full Text PDF

Genetically modified macrophage infusion has been proven to be a novel treatment for cancer. One of the most important processes in macrophage-based therapy is the efficient transfer of genes. HIV-1-derived lentiviruses were widely used as delivery vectors in chimeric antigen receptor T and NK cell construction.

View Article and Find Full Text PDF

Purified recombinant lentiviral Vpx proteins maintain their SAMHD1 degradation efficiency in resting CD4 T cells.

Anal Biochem

June 2023

Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany. Electronic address:

Different protein purification methods exist. Yet, they need to be adapted for specific downstream applications to maintain functional integrity of the recombinant proteins. This study established a purification protocol for lentiviral Vpx (viral protein X) and test its ability to degrade sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) ex vivo in resting CD4 T cells.

View Article and Find Full Text PDF

Lentiviral vector-based dendritic cell vaccines induce protective T cell responses against viral infection and cancer in animal models. In this study, we tested whether preventative and therapeutic vaccination could be achieved by direct injection of antigen-expressing lentiviral vector, obviating the need for ex vivo transduction of dendritic cells. Injected lentiviral vector preferentially transduced splenic dendritic cells and resulted in long-term expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!