Download full-text PDF

Source

Publication Analysis

Top Keywords

2-layer method
4
method culturing
4
culturing trichophyton
4
trichophyton verrucosum
4
verrucosum determining
4
determining sensitivity
4
sensitivity antifungal
4
antifungal agents]
4
2-layer
1
culturing
1

Similar Publications

Multivalued logic (MVL) systems, in which data are processed with more than two logic values, are considered a viable solution for achieving superior processing efficiency with higher data density and less complicated system complexity without further scaling challenges. Such MVL systems have been conceptually realized by using negative transconductance (NTC) devices whose channels consist of van der Waals (vdW) heterojunctions of low-dimensional semiconductors; however, their circuit operations have not been quite ideal for driving multiple stages in real circuit applications due to reasons such as a reduced output swing and poorly defined logic states. Herein, we demonstrate ternary inverter circuits with near rail-to-rail swing and three distinct logic states by employing vdW p-n heterojunctions of single-walled carbon nanotubes (SWCNT) and MoS where the SWCNT layer completely covers the MoS layer.

View Article and Find Full Text PDF

Experimental and Computational Synthesis of TiO Sol-Gel Coatings.

Langmuir

January 2025

Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.

During the experimental formation of sol-gel coatings, the colloid dispersions go through a drying process, and the structure of the coatings is formed as a result of complex chemical, colloidal, and capillary interactions. While computer simulations provide guidelines to tune and even design the nanomaterials synthesis, simulations of coating structure formation are hitherto unknown in the literature. Based on real experiments, we establish here a ReaxFF reactive force field-based molecular dynamics simulation protocol in order to investigate and determine the role of the experimental conditions on the pore structure formation in the coatings.

View Article and Find Full Text PDF

Diazepam (DZP) is a muscle-relaxing, anxiety-relieving sedative drug; nonetheless, it is also an addictive drug that may be abused. This work reports on the development of a novel electrochemical nanosensor for diazepam using SiO-encapsulated-3-mercaptopropionic acid-capped AuZnCeSeS quantum dots (QDs) overcoated with a molecularly imprinted polymer (MIP) on screen-printed carbon electrodes (SPCEs). Electrochemical, spectroscopic and electron microscopic characterization of the nanomaterial and modified electrode surface was carried out and is reported herein.

View Article and Find Full Text PDF

The ability to characterize periodic nanostructures in the laboratory gains more attention as nanotechnology is widely utilized in a variety of application fields. Scanning-free grazing-emission X-ray fluorescence spectroscopy (GEXRF) is a promising candidate to allow non-destructive, element-sensitive characterization of sample structures down to the nanometer range for process engineering. Adopting a complementary metal-oxide semiconductor (CMOS) detector to work energy-dispersively single-photon detection, the whole range of emission angles of interest can be recorded at once.

View Article and Find Full Text PDF
Article Synopsis
  • A new inorganic multilayer barrier film was created on polyethylene naphthalate (PEN) using advanced deposition techniques, combining a SiO layer from ICP-CVD and an AlO/ZnO nanolaminate from PEALD.
  • The resulting film has impressive optical transmittance of 88.1% and low water vapor permeability of 3.3 × 10 g/m/day, demonstrating effective collaboration between the two growth methods.
  • The study indicates that the PEALD layer repairs defects in the SiO layer and the multilayer structure enhances performance, making it suitable for long-lasting organic electronic device encapsulation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!