The manuscript reports the fabrication of an eco-friendly sol gel dye-sensitized solar cell (DSSC) based on aluminium (Al)-doped tin oxide nanoparticles with different concentrations (0.5, 1, and 5 mol%) of Al providing enhanced optical and electrical properties than its bare counterparts. The physical, chemical, optical, and electrical properties of the as-synthesized nanoparticles were studied using different analytical tools. X-ray diffraction (XRD) study reveals the crystal structure of the prepared samples ascribed to SnO nanoparticles uniformly with reduced crystallite size for Al-doped SnO nanoparticles. Field emission scanning electron microscope (FESEM) analysis reveals narrowing of particle size on doping with the Al, substantially enhancing the optical and surface characteristic features of the SnO nanoparticles. Photoconductivity studies indicate that all the samples have a good linear response with the increment of electric field in dark and photocurrent attributing to better photoconversion capability of the samples. Further, the optimized Al-doped SnO and bare SnO nanoparticles were subjected to sophisticated analytical studies such as high-resolution transmission electron microscope (HR-TEM) and X-ray photoelectron spectroscopy (XPS) for the better insight into their properties. The as-prepared Al-doped SnO nanoparticles in the present study record good optical, surface, and electrical properties which enhance their compatibility for possible photovoltaic applications especially in dye-sensitized solar cells as an environmentally safe alternate energy solution. Further, the current density-voltage (J-V) characteristics of the optimized Al-SnO and bare SnO photoanode component were probed for their suitability in DSSCs which disclosed enriched efficiency upon doping with aluminium nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-26733-8 | DOI Listing |
Int J Mol Sci
December 2024
Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania.
This study investigates the synthesis of ZnSnO@SiO@5-FU nanoparticles as an additive for bone fillers in dental maxillofacial reconstruction. ZnSnO nanoparticles were synthesized and coated with a SiO shell, followed by the incorporation of 5-Fluorouracil (5-FU), aimed at enhancing the therapeutic properties of classical fillers. Structural analysis using X-ray diffraction confirmed that ZnSnO was the single crystalline phase present, with its crystallinity preserved after both SiO coating and 5-FU incorporation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
Tin dioxide (SnO) stands as a promising material for the electron transport layer (ETL) in perovskite solar cells (PSCs) attributed to its superlative optoelectronic properties. The attainment of superior power conversion efficiency hinges critically on the preparation of high-quality SnO thin films. However, conventional nanoparticle SnO colloids often suffer from inherent issues such as numerous oxygen vacancy defects and film non-uniformity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Nanomaterials Laboratory, Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, India.
Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu 600127, India.
Electronic waste (e-waste) has become a significant environmental concern worldwide due to the rapid advancement of technology and short product lifecycles. Waste-printed electronic boards (WPCBs) contain valuable metals and semiconductors; among them, tin can be recycled and repurposed for sustainable material production. This study presents a potential ecofriendly methodology for the recovery of tin from WPCBs in the form of tin oxide nanostructured powders.
View Article and Find Full Text PDFTalanta
December 2024
Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; China-Israel Polypeptide Device and Application Technology Joint Research Center, Hangzhou, 310027, China. Electronic address:
Nitrogen dioxide (NO) is an important contaminant that poses a severe threat to environmental sustainability. Traditional inorganic NO gas detectors are generally used under harsh operating conditions and employ environmentally unfriendly resources, thus preventing widespread practical applications. Herein, self-assembled peptide microtubes (SPMTs) are combined with SnO nanoparticles (NPs) to develop a bioinspired NO gas sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!