Background: The high structural similarity between the Zika virus (ZIKV) and other flaviviruses, such as Dengue Virus (DENV), complicates the identification of the infecting virus due to the occurrence of cross-reactions in serological assays. This phenomenon has increased the demand for more specific antigens for immunodiagnostic applications.
Methods: The present work aimed to identify specific regions of ZIKV and produce unique antigens through computational methods, molecular and microbiological techniques.
Results: Based on the computational analysis we successfully expressed two recombinant proteins derived from specific regions of the ZIKV. Through serological assays using characterized sera, we observed that the region 146-182 of ZIKV's E protein, expressed in tandem, was not reactive despite the predictive sensitivity and specificity observed by computer analyses. On the other hand, the non-denatured fraction 220-352 of ZIKV's NS1 showed greater specificity to IgG+ sera of ZIKV by dot blot and western blot, which highlights its properties as a possible tool in the diagnosis of ZIKV.
Conclusion: These findings demonstrate that ZIKV NS1 fraction 220-352 is a potential tool that may be applied in the development of serological diagnosis. We also provided data that suggest the non-applicability of the region 146-182 of ZIKV's protein E in serological assays despite previous indications about its potential based on computational analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08820139.2023.2195432 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!