Mitochondria serve as critical producers of both cellular energy and metabolic precursors for biosynthesis required for organismal growth, activity, somatic maintenance, and reproduction. Consequently, variation in mitochondrial function is commonly associated with variation in life histories both within and across species. For instance, flight-capable, long-winged crickets have mitochondria with larger bioenergetic capacities than flightless, short-winged crickets investing in early lifetime fecundity instead of flight. However, we do not know whether differences in mitochondrial function associated with life history are fixed or result from flexible changes in metabolism throughout the life cycle. We measured mitochondrial function of fat body tissue across early adulthood of long-winged and short-winged crickets from two species of wing-polymorphic field crickets ( and ). Fat body is a multifunctional organ that supports both flight and reproduction in insects. Consistent with flexibility in mitochondrial function specific for alternative life histories, the capacity for oxidative phosphorylation increases in mitochondria throughout early adulthood in the fat body of long-winged but not short-winged crickets. Furthermore, fat body mitochondrial oxidative phosphorylation capacities declined rapidly when long-wing crickets degraded their flight muscles and initiated large-scale oogenesis. This finding suggests that shifts in tissue function require a concurrent shift in mitochondrial function and that tissue-specific functional constraints may underpin the flight-oogenesis trade-off. In conclusion, changes in mitochondrial bioenergetics form a component of alternative life histories, indicating that mitochondrial function is dynamic and set to a level that matches current and future energy demands and biosynthetic requirements of life history.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00191.2022 | DOI Listing |
Cell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
School of Engineering, Dali University, Dali, Yunnan Province, China.
The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFBiol Res
January 2025
Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
January 2025
Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!