A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ventilatory response to peripheral chemoreflex and muscle metaboreflex during static handgrip in healthy humans: evidence of hyperadditive integration. | LitMetric

New Findings: What is the central question of this study? What is the effect of peripheral chemoreflex and muscle metaboreflex integration on ventilation regulation, and what is the effect of integration on breathing-related sensations and emotions? What is the main finding and its importance? Peripheral chemoreflex and muscle metaboreflex coactivation during isocapnic static handgrip exercise appeared to elicit a hyperadditive effect with regard to ventilation and an additive effect with regard to breathing-related sensations and emotions. These findings reveal the nature of the integration between two neural mechanisms that operate during small-muscle static exercise performed under hypoxia.

Abstract: Exercise augments the hypoxia-induced ventilatory response in an exercise intensity-dependent manner. A mutual influence of hypoxia-induced peripheral chemoreflex activation and exercise-induced muscle metaboreflex activation might mediate the augmentation phenomenon. However, the nature of these reflexes' integration (i.e., hyperadditive, additive or hypoadditive) remains unclear, and the coactivation effect on breathing-related sensations and emotions has not been explored. Accordingly, we investigated the effect of peripheral chemoreflex and muscle metaboreflex coactivation on ventilatory variables and breathing-related sensations and emotions during exercise. Fourteen healthy adults performed 2-min isocapnic static handgrip, first with the non-dominant hand and immediately after with the dominant hand. During the dominant hand exercise, we (a) did not manipulate either reflex (control); (b) activated the peripheral chemoreflex by hypoxia; (c) activated the muscle metaboreflex in the non-dominant arm by post-exercise circulatory occlusion (PECO); or (d) coactivated both reflexes by simultaneous hypoxia and PECO use. Ventilation response to coactivation of reflexes (mean ± SD, 13 ± 6 l/min) was greater than the sum of responses to separated activations of reflexes (mean ± SD, 8 ± 8 l/min, P = 0.005). Breathing-related sensory and emotional responses were similar between coactivation of reflexes and the sum of separate activations of reflexes. Thus, the peripheral chemoreflex and muscle metaboreflex integration during exercise appeared to be hyperadditive with regard to ventilation and additive with regard to breathing-related sensations and emotions in healthy adults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988439PMC
http://dx.doi.org/10.1113/EP091094DOI Listing

Publication Analysis

Top Keywords

peripheral chemoreflex
28
muscle metaboreflex
28
chemoreflex muscle
20
breathing-related sensations
20
sensations emotions
16
static handgrip
12
ventilatory response
8
metaboreflex integration
8
metaboreflex coactivation
8
isocapnic static
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!