Background: Cryopreservation and thawing protocols represent key factors for the efficacy of cellular therapy products, such as hematopoietic stem cells (HSCs). While the HSC cryopreservation has already been standardized, the thawing procedures have been poorly studied. This study aimed to evaluate the thawing and washing protocol of cord blood (CB) derived HSCs or the HPC(CB), by selecting the optimal thawing solution and determining CD34+ cells' stability over time.
Study Design And Methods: Seven cryopreserved CB products were thawed, washed, and resuspended in three different solutions (10% Dextran40 in NaCl equally prepared with 5% human albumin; 5% human albumin in PBS/EDTA; and normal saline) and stored at 4°C (±2°C). Mononuclear cell (MNC) count, CD45+/CD34+ cell enumeration, and cell viability were tested at 0, 1, 2, 4, 6, 8, 12, 24, 36, and 48 h. The protocol with the selected solution was further validated on additional 10 CB samples. The above parameters and the colony-forming unit (CFU) assay were analyzed at time points 0, 2, 4, 6, and 8 h.
Results And Discussion: The results showed that the 5% human albumin was the most suitable thawing solution. MNCs were stable up to 4 h (p = 0.009), viable CD45+ cells were unstable even at 2 h (p = 0.013), and viable CD34+ cells were stable until 6 h (p = 0.019). The CFU assay proved the proliferative potential up to 8 h, although significantly decreased after 4 h (p = 0.013), and correlated with the viable CD34+ cell counts. We demonstrated that the post-thawed and washed HPC(CB) using 5% human albumin is stable for up to 4 h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/trf.17338 | DOI Listing |
Sci Rep
January 2025
Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
Parietal Epithelial Cells (PECs) activation and proliferation are common to several distinct forms of glomerulopathies. Due to several stimuli, PECs can change to a progenitor (CD24 and CD133/2) or a pro-sclerotic (CD44) phenotype. In addition, PECs, which are constantly exposed to filtered albumin, are known to be involved in albumin internalization, but how this mechanism occurs is unknown.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Integrative Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023. Electronic address:
Ethnopharmacological Relevance: Danggui Buxue Decoction (DBD) is a classic traditional Chinese herbal formulation, composed of Astragali Radix (AR) and Angelica Sinensis Radix (ASR) in a ratio of 5:1. It is a traditional Chinese medicine classic prescription for nourishing Qi and Yin (vital energy and body fluids), and it is effective in treating various clinical diseases. Diabetic nephropathy (DN) is categorized under "thirsting," "edema," and "turbid urine" in Traditional Chinese Medicine (TCM).
View Article and Find Full Text PDFBiomaterials
January 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China. Electronic address:
The targeted protein degradation (TPD) strategy modulates tumor growth pathways by degrading proteins of interest (POIs) and has reshaped anti-tumor drug research and development. Recently, the emergence of photodegradation-targeting chimeras (PDTACs) and laser irradiation at specific sites enables precise spatiotemporal controllability of TPD. Capitalizing on the advances of PDTACs, herein, we report a nanoplatform for efficiently delivering PDTAC molecule for photodegradation of bromodomain-containing protein 4 (BRD4) proteins, the key activators of oncogenic transcription.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:
Theories predicted that shear promotes desorption, but due to the presence of factors such as aggregation effects, it is difficult to observe how shear influences the adsorption and desorption of individual protein molecules. In this study, we employed high-throughput single-molecule tracking and molecular dynamics simulations to investigate how shear flow affects the adsorption kinetics of plasma proteins (including human serum albumin, immunoglobulin G, and fibrinogen) at solid-liquid interfaces. Over the studied shear rate range of 0 - 10 s, shear stress did not trigger the protein desorption.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!