Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To develop 2D turbo spin-echo (TSE) imaging using annular spiral rings (abbreviated "SPRING-RIO TSE") with compensation of concomitant gradient fields and B inhomogeneity at both 0.55T and 1.5T for fast T -weighted imaging.
Methods: Strategies of gradient waveform modifications were implemented in SPRING-RIO TSE for compensation of self-squared concomitant gradient terms at the TE and across echo spacings, along with reconstruction-based corrections to simultaneously compensate for the residual concomitant gradient and B field induced phase accruals along the readout. The signal pathway disturbance caused by time-varying and spatially dependent concomitant fields was simulated, and echo-to-echo phase variations before and after sequence-based compensation were compared. Images from SPRING-RIO TSE with no compensation, with compensation, and Cartesian TSE were also compared via phantom and in vivo acquisitions.
Results: Simulation showed how concomitant fields affected the signal evolution with no compensation, and both simulation and phantom studies demonstrated the performance of the proposed sequence modifications, as well as the readout off-resonance corrections. Volunteer data showed that after full correction, the SPRING-RIO TSE sequence achieved high image quality with improved SNR efficiency (15%-20% increase), and reduced RF SAR (˜50% reduction), compared to the standard Cartesian TSE, presenting potential benefits, especially in regaining SNR at low-field (0.55T).
Conclusion: Implementation of SPRING-RIO TSE with concomitant field compensation was tested at 0.55T and 1.5T. The compensation principles can be extended to correct for other trajectory types that are time-varying along the echo train and temporally asymmetric in TSE-based imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578525 | PMC |
http://dx.doi.org/10.1002/mrm.29663 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!