Glioma is the most common malignant brain tumor. GPR133 is a key factor in the progression of glioma. However, the role of GPR133 in glioma invasion and EMT and the microRNAs (miRNAs) associated with this pathway are still poorly understood. This study aims to elucidate the biological function of miR-106a-5p and GPR133 in glioma as well as the molecular mechanism of their interaction. The mRNA expression of miR-106a-5p and GPR133 in glioma specimens and cells was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The protein level of GPR133 and the levels of invasion- and EMT-related proteins were measured by western blotting. miR-106a-5p and GPR133 function in glioma cells was determined through cell counting kit-8 (CCK-8), transwell, wound healing, colony formation assays and xenograft assays . To determine the targeting relationship between miR-106a-5p and GPR133, a dual-luciferase reporter assay was conducted. A marked reduction in miR-106a-5p expression was observed in glioma cells and specimens. Patients with high expression of miR-106a-5p had a good prognosis, while patients with high expression of GPR133 had a shorter OS. Additionally, overexpression of miR-106a-5p or downregulation of GPR133 inhibited the progression of glioma cells. Furthermore, miR-106a-5p negatively regulated GPR133 expression by binding to its 3'-UTR, and restrained the invasion, migration, proliferation and EMT of glioma cells by targeting GPR133. miR-106a-5p is a tumor suppressor that negatively regulates GPR133. The miR-106a-5p/GPR133 axis could potentially serve as a therapeutic target for glioma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00207454.2023.2201873 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!