The 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System (CNS) and recent smaller annual updates have shown that alterations in tumor genetics are essential to determining tumor diagnosis, biological activity, and potential treatment options. This review summarizes the most important mutations and oncometabolites, with a focus on the central role played by 2-hydroxyglutarate in isocitrate dehydrogenase mutant tumors, as well as their corresponding imaging counterparts using standard and advanced imaging techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077413PMC
http://dx.doi.org/10.1259/bjro.20210070DOI Listing

Publication Analysis

Top Keywords

imaging 2-hydroxyglutarate
4
2-hydroxyglutarate brain
4
brain oncometabolites
4
oncometabolites pertinent
4
pertinent critical
4
critical genomic
4
genomic alterations
4
alterations brain
4
brain tumors
4
tumors 2021
4

Similar Publications

Since the overall glioma mass and its subcomponents-enhancing region (malignant part of the tumor), non-enhancing (less aggressive tumor cells), necrotic core (dead cells), and edema (water deposition)-are complex and irregular structures, non-Euclidean geometric measures such as fractal dimension (FD or "fractality") and lacunarity are needed to quantify their structural complexity. Fractality measures the extent of structural irregularity, while lacunarity measures the spatial distribution or gaps. The complex geometric patterns of the glioma subcomponents may be closely associated with the grade and molecular landscape.

View Article and Find Full Text PDF

Structural basis of the excitatory amino acid transporter 3 substrate recognition.

bioRxiv

September 2024

Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA.

Excitatory amino acid transporters (EAATs) reside on cell surfaces and uptake substrates, including L-glutamate, L-aspartate, and D-aspartate, using ion gradients. Among five EAATs, EAAT3 is the only isoform that can efficiently transport L-cysteine, a substrate for glutathione synthesis. Recent work suggests that EAAT3 also transports the oncometabolite R-2-hydroxyglutarate (R-2HG).

View Article and Find Full Text PDF

Cardiac hypertrophy is a classical forerunner of heart failure and myocardial structural and metabolic remodeling are closely associated with cardiac hypertrophy. We aim to investigate the characteristics of myocardial structure and central carbon metabolism of cardiac hypertrophy at different stages. Using echocardiography and pathological staining, early and compensatory cardiac hypertrophy were respectively defined as within 7 days and from 7 to 14 days after transverse aortic constriction (TAC) in mice.

View Article and Find Full Text PDF

The isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) enzymes are involved in key metabolic processes in human cells, regulating differentiation, proliferation, and oxidative damage response. IDH mutations have been associated with tumor development and progression in various solid tumors such as glioma, cholangiocarcinoma, chondrosarcoma, and other tumor types and have become crucial markers in molecular classification and prognostic assessment. The intratumoral and serum levels of D-2-hydroxyglutarate (D-2-HG) could serve as diagnostic biomarkers for identifying IDH mutant (IDHmut) tumors.

View Article and Find Full Text PDF

Background: Glioma is one of the most drug and radiation-resistant tumors. Gliomas suffer from inter- and intratumor heterogeneity which makes the outcome of similar treatment protocols vary from patient to patient. This article is aimed to overview the potential imaging markers for individual diagnosis, prognosis, and treatment response prediction in malignant glioma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!