A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EQRbot: A chatbot delivering EQR argument-based explanations. | LitMetric

EQRbot: A chatbot delivering EQR argument-based explanations.

Front Artif Intell

Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln, United Kingdom.

Published: March 2023

Recent years have witnessed the rise of several new argumentation-based support systems, especially in the healthcare industry. In the medical sector, it is imperative that the exchange of information occurs in a clear and accurate way, and this has to be reflected in any employed virtual systems. Argument Schemes and their critical questions represent well-suited formal tools for modeling such information and exchanges since they provide detailed templates for explanations to be delivered. This paper details the EQR argument scheme and deploys it to generate explanations for patients' treatment advice using a chatbot (EQRbot). The EQR scheme (devised as a pattern of Explanation-Question-Response interactions between agents) comprises multiple premises that can be interrogated to disclose additional data. The resulting explanations, obtained as instances of the employed argumentation reasoning engine and the EQR template, will then feed the conversational agent that will exhaustively convey the requested information and answers to follow-on users' queries as personalized Telegram messages. Comparisons with a previous baseline and existing argumentation-based chatbots illustrate the improvements yielded by EQRbot against similar conversational agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076765PMC
http://dx.doi.org/10.3389/frai.2023.1045614DOI Listing

Publication Analysis

Top Keywords

eqrbot chatbot
4
chatbot delivering
4
eqr
4
delivering eqr
4
eqr argument-based
4
explanations
4
argument-based explanations
4
explanations years
4
years witnessed
4
witnessed rise
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!