A number of biological tissues and synthetic gels consist of a fibrous network infused with liquid. There have been a few experimental studies of the rheological properties of such gels under applied compressive strain. Their results suggest that a plot of rheological moduli as a function of applied compressive strain has a long plateau flanked by a steeply increasing curve for large compressive strains and a slowly decreasing curve for small strains. In this paper we explain these trends in rheological properties using a chemo-elastic model characterized by a double-well strain energy function for the underlying fibrous network. The wells correspond to rarefied and densified phases of the fibrous network at low and high strains, respectively. These phases can co-exist across a movable transition front in the gel in order to accommodate overall applied compression. We find that the rheological properties of fibrous gels share similarities with a Kelvin-Voigt visco-elastic solid. The storage modulus has its origins in the elasticity of the fibrous network, while the loss modulus is determined by the dissipation caused by liquid flow through pores. The rheological properties can depend on the number of phase transition fronts present in a compressed sample. Our analysis may explain the dependence of storage and loss moduli of fibrin gels on the loading history. We also point to the need for combining rheological measurements on gels with a microstructural analysis that could shed light on various dissipation mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081149 | PMC |
http://dx.doi.org/10.1016/j.eml.2022.101757 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Ophthalmology, The Future Medicine Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
Excessive fibrosis is the primary factor for the failure of glaucoma drainage device (GDD) implantation. Thus, strategies to suppress scar formation in GDD implantation are crucial. Although it is known that in implanted medical devices, microscale modification of the implant surface can modulate cell behavior and reduce the incidence of fibrosis, in the field of ophthalmic implants, especially the modification and effects of hydrogel micropatterns have rarely been reported.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey.
The present study investigated the properties of galactomannan, a water-soluble polysaccharide extracted from the Prosopis farcta (Çeti) plant. These properties encompassed its functional characteristics, chemical composition, rheological behavior, and morphological structure. The results were systematically compared with those of the commercially utilized locust bean gum (LBG).
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:
As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!