Extrusion printing represents one of the leading additive manufacturing techniques for tissue engineering purposes due to the possibility of achieving accurate control of the final shape and porosity of the scaffold. Despite many polymeric materials having already been optimized for this application, the processing of biopolymer-based systems still presents several limitations mainly ascribed to their poor rheological properties. Moreover, the introduction of inorganic components into the biomaterial formulation may introduce further difficulties related to system homogeneity, finally compromising its extrudability. In this context, the present study aimed at developing a new multi-phase biomaterial ink able to mimic the native composition of bone extracellular matrix, combining type-I-collagen with nano-hydroxyapatite and mesoporous bioactive glass nanoparticles. Starting from a comprehensive rheological assessment, computational-fluid-dynamics-based models were exploited to describe the material flow regime and define the optimal printing process planning. During printing, a gelatin-based bath was exploited to support the deposition of the material, while the gelation of collagen and its further chemical crosslinking with genipin enabled the stabilization of the printed structure, characterized by high shape fidelity. The developed strategy enables the extrusion printing of complex multi-phase systems and the design of high-precision biomimetic scaffolds with great potential for bone tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078475 | PMC |
http://dx.doi.org/10.1002/app.53593 | DOI Listing |
Gels
December 2024
Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing.
View Article and Find Full Text PDFGels
December 2024
Department of Orthopaedic Surgery, Duke University Health System, Durham, NC 27710, USA.
This study investigates 3D extrusion bioinks for cartilage tissue engineering by characterizing the physical properties of 3D-printed scaffolds containing varying alginate and polyvinyl alcohol (PVA) concentrations. We systematically investigated the effects of increasing PVA and alginate concentrations on swelling, degradation, and the elastic modulus of printed hydrogels. Swelling decreased significantly with increased PVA concentrations, while degradation rates rose with higher PVA concentrations, underscoring the role of PVA in modulating hydrogel matrix stability.
View Article and Find Full Text PDFGels
December 2024
Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain.
Considering the complexity in terms of design that characterizes the different tissues of the human body, it is necessary to study and develop more precise therapies. In this sense, this article presents the possibility of fabricating photocurable thermosensitive hydrogels with free geometry and based on N-Vinyl Caprolactam (VCL) with the aim of modulating the adhesion of non-planar cell cultures. The fabrication process is based on the use as a mold of two-layer thick water-soluble polyvinyl alcohol (PVA) previously printed by Extrusion Material (MatEx).
View Article and Find Full Text PDFGels
November 2024
Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
The abundance of hyaluronic acid (HA) in human tissues attracts its thorough research in tissue regenerating scaffolds and 3D bioprintable hydrogel preparation. Though methacrylation of HA can lead to photo-crosslinkable hydrogels, the catalyst has toxicity concerns, and the hydrogel is not suitable for creating stable complex 3D structures using extrusion 3D bioprinting. In this study, a dual crosslinking on methacrylated HA is introduced, using cysteamine-grafted HA and varying concentrations of 2-hydroxy ethyl acrylate.
View Article and Find Full Text PDFDrug Dev Ind Pharm
December 2024
Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06330 Etiler, Ankara, Türkiye.
Introduction: This study aims to develop immediate release tablet formulations of lornoxicam (LRX) using hot melt extrusion (HME)-based fused deposition modelling (FDM) focusing on the adjustment of drug release by arranging infill densities and evaluating microcrystalline cellulose II (MCC II) as a disintegrating agent for HME-FDM purposes. LRX is a poorly soluble drug that exhibits pH-dependent solubility with a high thermal degradation temperature. These characteristics make it an ideal model drug for the HME-based FDM technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!