Wide-gamut structural colours on oakblue butterflies by naturally tuned photonic nanoarchitectures.

R Soc Open Sci

Institute of Technical Physics and Materials Science, Centre for Energy Research, PO Box 49, 1525 Budapest, Hungary.

Published: April 2023

The iridescent structural colours of butterflies, generated by photonic nanoarchitectures, often function as species-specific sexual signals; therefore, they are reproduced precisely from generation to generation. The wing scales of oakblue hairstreak butterflies (genus , Theclinae, Lycaenidae, Lepidoptera) contain multi-layer photonic nanoarchitectures, which can generate a wide range of structural colours, from violet to green. By scanning (SEM) and cross-sectional transmission electron microscopy (TEM) investigation, the colour tuning mechanism of the cover scales was explored. We revealed that the characteristic size change of structural elements in similar photonic nanoarchitectures led to different structural colours that were examined by various reflectance spectrophotometry techniques. The measured structural properties of the naturally tuned photonic nanoarchitectures were used to calculate wing reflectances, which were compared with the measurement results. We found that the simulated structural colours were systematically redshifted by 95-126 nm as compared with the measured normal-incidence reflectance results. This is attributed to the swelling of the chitinous multi-layer structures during the standard TEM sample preparation and the tilt of the cover scales, which both affect the apparent layer thicknesses in the TEM cross-sections. We proposed a simulation correction and compared the results with the layer thicknesses measured on cryogenically prepared non-embedded SEM cross-sections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073902PMC
http://dx.doi.org/10.1098/rsos.221487DOI Listing

Publication Analysis

Top Keywords

structural colours
20
photonic nanoarchitectures
20
naturally tuned
8
tuned photonic
8
cover scales
8
layer thicknesses
8
structural
6
colours
5
photonic
5
nanoarchitectures
5

Similar Publications

Effects of Phenoxazine Chromophore on Optical, Electrochemical and Electrochromic Behaviors of Carbazole-Thiophene Derivatives.

Polymers (Basel)

December 2024

Henan Key Laboratory of Rare Earth Functional Materials, The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, China.

Phenoxazine, as an organic-small-molecule chromophore, has attracted much attention for its potential electrochromic applications recently. To develop appealing materials, phenoxazine chromophores were introduced at the N-position of carbazole-thiophene pigment, yielding two novel monomers (DTCP and DDCP), whose chemical structures were characterized by NMR, HRMS and FTIR. The results of the optical property study indicate that little influence could be observed in the presence of the phenoxazine chromophore.

View Article and Find Full Text PDF

Black root rot is a dangerous disease affecting many crops. It is caused by pathogens formerly known as and then reclassified as two cryptic species, and . The aim of this study was to perform species identification, morphological characterization, and pathogenicity tests for fungal isolates obtained from tobacco roots with black root rot symptoms in Poland.

View Article and Find Full Text PDF

White Light-Emitting Flexible Displays with Quantum-Dot Film and Greenish-Blue Organic Light-Emitting Diodes.

Micromachines (Basel)

December 2024

Department of Semiconductor Engineering, Gachon University, 1342 Seongnam-Daero, Soojung-gu, Seongnam 13120, Republic of Korea.

White organic light-emitting diodes (OLEDs) represent a significant technology in the display industry for the achievement of full color. However, sophisticated technologies are required for white light emission. In this paper, we developed a simple white light-emitting display device using a quantum-dot (QD) film and a greenish-blue OLED.

View Article and Find Full Text PDF

Preparation and Performance Study of MXene-Regulated Ethylene Glycol-Induced WO Film.

Micromachines (Basel)

December 2024

College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.

This study introduces the development of a W-M electrochromic film, characterized by a "coral"-like TiO@WO heterostructure, synthesized via a hydrothermal process leveraging the inherent instability of MXene. The film showcases exceptional electrochromic performance, with a coloring response time of 2.8 s, a bleaching response time of 4.

View Article and Find Full Text PDF

Tungsten oxide (WO) electrochromic devices are obtaining increasing interest due to their color change and thermal regulation. However, most previous work focuses on the absorption or transmission spectra of materials, rather than the optical parameters evolution in full spectrum in the electrochromic processes. Herein, we developed a systematic protocol of ex situ methods to clarify the evolutions of subtle structure changes, Raman vibration modes, and optical parameters of WO thin films in electrochromic processes as stimulated by dosage-dependent Li insertion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!