Building a sustainable human habitat on the Moon requires advances in excavation, paving, and additive manufacturing to construct landing pads, surface transportation arteries, resilient shelters, and scientific outposts. Construction of infrastructure elements on the lunar surface necessitates exploration of the interfacial reactivity of locally sourced regolith and the adaptation of Earth-based construction techniques. Various crosslinking frameworks and sintering methods have been proposed as a means of consolidating lunar regolith into load-bearing structures but each have challenges related to incomplete understanding of reaction chemistry, excessive thermal budgets, and lack of universal applicability to different mineral components of regolith. We describe here a versatile experimental and computational study of the consolidation of a regolith simulant through formation of siloxane networks enmeshing mineral particles by surface dissolution-precipitation and polycondensation reactions. Furthermore, by tailoring the rheological properties of the formulation an additive manufacturing feedstock can be developed for the construction of lunar infrastructure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074153 | PMC |
http://dx.doi.org/10.1016/j.isci.2023.106382 | DOI Listing |
Nanoscale Horiz
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
Bacterial infection in bone tissue engineering is a severe clinical issue. Traditional antimicrobial methods usually cause problems such as bacterial resistance and biosecurity. Employing semiconductor photocatalytic antibacterial materials is a more controlled and safer strategy, wherein semiconductor photocatalytic materials generate reactive oxygen species under illumination for killing bacteria by destroying their cell membranes, proteins, DNA, In this review, P-type and N-type semiconductor photocatalytic materials and their antibacterial mechanisms are introduced.
View Article and Find Full Text PDFToxicol Res (Camb)
February 2025
Department of chemistry, Emerson University Multan, Multan 60000, Pakistan.
Since the Industrial Revolution, ecological damage, ecosystem disruption, and climate change acceleration have frequently resulted from human advancement at the price of the environment. Due to the rise in illnesses, Industry 6.0 calls for a renewed dedication to sustainability with latest technologies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Associate Professor of Mechanical Engineering, College of Engineering, University of Georgia (UGA), 302 E. Campus Rd., Athens 30602, United States.
This study introduces a biomimetic approach to 3D printing multilayered hierarchical porous membranes (MHMs) using Direct Ink Writing (DIW) technology. Fabricated through a fast layer-by-layer printing process with varying concentrations of pore-forming agents, the produced MHMs mimic the hierarchical pore structure and filtration capabilities of natural soil systems. As a result, the 3D-printed MHMs achieved an impressive oil rejection rate of 99.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Computer Science and Engineering, Indian Institute of Information Technology Design and Manufacturing (III TDM), Kurnool, Andhrapradesh, India.
Climate change poses significant challenges to global food security by altering precipitation patterns and increasing the frequency of extreme weather events such as droughts, heatwaves, and floods. These phenomena directly affect agricultural productivity, leading to lower crop yields and economic losses for farmers. This study leverages Artificial Intelligence (AI) and Explainable Artificial Intelligence (XAI) techniques to predict crop yields and assess the impacts of climate change on agriculture, providing a novel approach to understanding complex interactions between climatic and agronomic factors.
View Article and Find Full Text PDFFood Chem X
January 2025
School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
3D printing offers a promising solution for the increasing demand for visually appealing dysphagia diets. Xanthan gum (XG) is a critical component in various thickeners specialized for dysphagia diets, in which pyruvate group is important, but relative study remains scarce. This study tried to create 3D printed dysphagia diet using composite gels of pea protein (PPI) and XG with various pyruvate content (XG: 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!