Lung cancer is the most frequently diagnosed cancer type and the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) represents most of the lung cancer. Vascular endothelial growth factor receptor-2 (VEGFR2) is a member of the VEGF family of receptor tyrosine kinase proteins, expressed on both endothelial and tumor cells which is one of the key proteins contributing to cancer development and involved in drug resistance. We previously showed that Musashi-2 (MSI2) RNA-binding protein is associated with NSCLC progression by regulating several signaling pathways relevant to NSCLC. In this study, we performed Reverse Protein Phase Array (RPPA) analysis of murine lung cancer which nominated VEGFR2 protein as strongly positively regulated by MSI2. Next, we validated VEGFR2 protein regulation by MSI2 in several human NSCLC cell line models. Additionally, we found that MSI2 affected AKT signaling via negative mRNA translation regulation. In silico prediction analysis suggested that both VEGFR2 and PTEN mRNAs have predicted binding sites for MSI2. We next performed RNA immunoprecipitation coupled with quantitative PCR which confirmed that MSI2 directly binds to VEGFR2 and PTEN mRNAs, suggesting direct regulation mechanism. Finally, MSI2 expression positively correlated with VEGFR2 and VEGF-A protein levels in human NSCLC samples. We conclude that MSI2/VEGFR2 axis contributes to NSCLC progression and is worth further investigations and therapeutic targeting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081235PMC
http://dx.doi.org/10.1101/2023.03.29.534783DOI Listing

Publication Analysis

Top Keywords

lung cancer
20
akt signaling
8
nsclc progression
8
vegfr2 protein
8
human nsclc
8
vegfr2 pten
8
pten mrnas
8
cancer
7
msi2
7
nsclc
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!