Introduction: Antiretroviral treatment regimens can effectively control HIV replication and some aspects of disease progression. However, molecular events in end-organ diseases such as central nervous system (CNS) disease are not yet fully understood, and routine eradication of latent reservoirs is not yet in reach. Brain tissue-derived extracellular vesicles (bdEVs) act locally in the source tissue and may indicate molecular mechanisms in HIV CNS pathology. Regulatory RNAs from EVs have emerged as important participants in HIV disease pathogenesis. Using brain tissue and bdEVs from the simian immunodeficiency virus (SIV) model of HIV disease, we profiled messenger RNAs (mRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), seeking to identify possible networks of RNA interaction in SIV infection and neuroinflammation.

Methods: Postmortem occipital cortex tissue were collected from pigtailed macaques: uninfected controls and SIV-infected subjects (acute phase and chronic phase with or without CNS pathology). bdEVs were separated and characterized in accordance with international consensus standards. RNAs from bdEVs and source tissue were used for sequencing and qPCR to detect mRNA, miRNA, and circRNA levels.

Results: Multiple dysregulated bdEV RNAs, including mRNAs, miRNAs, and circRNAs, were identified in acute infection and chronic infection with pathology. Most dysregulated mRNAs in bdEVs reflected dysregulation in their source tissues. These mRNAs are disproportionately involved in inflammation and immune responses, especially interferon pathways. For miRNAs, qPCR assays confirmed differential abundance of miR-19a-3p, let-7a-5p, and miR-29a-3p (acute SIV infection), and miR-146a-5p and miR-449a-5p (chronic with pathology) in bdEVs. In addition, target prediction suggested that several circRNAs that were differentially abundant in source tissue might be responsible for specific differences in small RNA levels in bdEVs during SIV infection.

Conclusions: RNA profiling of bdEVs and source tissues reveals potential regulatory networks in SIV infection and SIV-related CNS pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081316PMC
http://dx.doi.org/10.1101/2023.04.01.535193DOI Listing

Publication Analysis

Top Keywords

siv infection
16
source tissue
12
cns pathology
12
brain tissue
8
brain tissue-derived
8
tissue-derived extracellular
8
extracellular vesicles
8
simian immunodeficiency
8
immunodeficiency virus
8
virus siv
8

Similar Publications

The latent viral reservoir remains the major barrier to HIV cure, placing the burden of strict adherence to antiretroviral therapy (ART) on people living with HIV to prevent recrudescence of viremia. For infants with perinatally acquired HIV, adherence is anticipated to be a lifelong need. In this study, we tested the hypothesis that administration of ART and viral Envelope-specific rhesus-derived IgG1 monoclonal antibodies (RhmAbs) with or without the IL-15 superagonist N-803 early in infection would limit viral reservoir establishment in SIV-infected infant rhesus macaques.

View Article and Find Full Text PDF

The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques.

View Article and Find Full Text PDF

Purpose Of Review: Women are underrepresented in HIV infection and prevention research despite making up half of people living with HIV. The female genital tract (FGT) serves as a primary site of HIV acquisition, but gaps in knowledge remain regarding protective innate immune mechanisms. Innate lymphoid cells are tissue-resident cells involved in mucosal barrier maintenance and protection, and innate lymphoid cells (ILCs) are altered during chronic HIV infection.

View Article and Find Full Text PDF

Purpose Of Review: Typically, both HIV-infected humans and simian immunodeficiency virus (SIV)-infected Asian nonhuman primates (NHPs) eventually progress to AIDS, while African NHPs that are natural hosts of SIV do not, in spite of life-long, high levels of viral replication. Lack of disease progression in African NHPs is not due to some adaptation by the virus, but rather to host adaptations to the virus. Central to these adaptations is maintenance of the gut integrity during acute viral replication and inflammation, which allows natural hosts to avoid the chronic inflammation characteristic to pathogenic HIV/SIV infection.

View Article and Find Full Text PDF

Elephant in the room: natural killer cells don't forget HIV either.

Curr Opin HIV AIDS

December 2024

Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA.

Purpose Of Review: Like elephants (and T cells), accumulating evidence suggest natural killer (NK) cells never forget. The description of adaptive or memory NK cells, which can be induced by HIV/SIV infections and vaccines and associated with protective effects in persons with HIV (PWH), has dramatically increased the interest in leveraging NK cells to prevent HIV infection or suppress HIV reservoirs. However, harnessing their full antiviral potential has been hindered by an incomplete understanding of mechanisms underlying adaptive NK cell development and infected cell recognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!