Pancreatic cancer (PC) is one of the most aggressive types of cancer, with a five-year overall survival rate of 11% among all-comers. Current systemic therapeutic options are limited to cytotoxic chemotherapies which have limited clinical efficacy and are often associated with development of drug resistance. Analysis of The Cancer Genome Atlas showed that wild-type isocitrate dehydrogenase (wtIDH1) is overexpressed in pancreatic tumors. In this study, we focus on the potential roles of wtIDH1 in pancreatic cancer chemoresistance. We found that treatment of pancreatic cancer cells with chemotherapy induced expression of wtIDH1, and this serves as a key resistance factor. The enzyme is protective to cancer cells under chemotherapy-induced oxidative stress by producing NADPH and alpha-ketoglutarate to maintain redox balance and mitochondrial function. An FDA-approved mutant IDH1 inhibitor, ivosidenib (AG-120), is actually a potent wtDH1 inhibitor under a nutrient-deprived microenvironment, reflective of the pancreatic cancer microenvironment. Suppression of wtIDH1 impairs redox balance, results in increased ROS levels, and enhances chemotherapy induced apoptosis in pancreatic cancer vis ROS damage . experiments further revealed that inhibiting wtIDH1 enhances chemotherapy anti-tumor effects in patient-derived xenografts and murine models of pancreatic cancer. Pharmacologic wtIDH1 inhibition with ivosidenib represents an attractive option for combination therapies with cytotoxic chemotherapy for patients with pancreatic cancer. Based on these data, we have initiated phase Ib trial combining ivosidenib and multi-agent chemotherapy in patients with pancreatic cancer (NCT05209074).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081181 | PMC |
http://dx.doi.org/10.1101/2023.03.29.534596 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!