Collective motion emerges from individual interactions which produce groupwide patterns in behavior. While adaptive changes to collective motion are observed across animal species, how local interactions change when these collective behaviors evolve is poorly understood. Here, we use the Mexican tetra, which exists as a schooling surface form and a non-schooling cave form, to study differences in how fish alter their swimming in response to neighbors across ontogeny and between evolutionarily diverged populations. We find that surface fish undergo a transition to schooling during development that occurs through increases in inter-individual alignment and attraction mediated by changes in the way fish modulate speed and turning relative to neighbors. Cavefish, which have evolved loss of schooling, exhibit neither of these schooling-promoting interactions at any stage of development. These results reveal how evolution alters local interaction rules to produce striking differences in collective behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081253PMC
http://dx.doi.org/10.1101/2023.03.28.534467DOI Listing

Publication Analysis

Top Keywords

local interaction
8
interaction rules
8
collective behavior
8
collective motion
8
collective
5
changes local
4
rules ontogeny
4
ontogeny underlie
4
underlie evolution
4
evolution collective
4

Similar Publications

PP2A-Tws dephosphorylates Map205, is required for Polo localization to microtubules and promotes cytokinesis in Drosophila.

Cell Div

December 2024

Institute for Research in Immunology and Cancer, Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Québec, Canada.

Background: Mitosis and cytokinesis are regulated by reversible phosphorylation events controlled by kinases and phosphatases. Drosophila Polo kinase, like its human ortholog PLK1, plays several roles in this process. Multiple mechanisms contribute to regulate Polo/PLK1 activity, localization and interactions.

View Article and Find Full Text PDF

Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) play crucial roles in numerous biological processes and are involved in complex human diseases through interactions with proteins. Accurate identification of lncRNA-protein interactions (LPI) can help elucidate the functional mechanisms of lncRNAs and provide scientific insights into the molecular mechanisms underlying related diseases. While many sequence-based methods have been developed to predict LPIs, efficiently extracting and effectively integrating potential feature information that reflects functional attributes from lncRNA and protein sequences remains a significant challenge.

View Article and Find Full Text PDF

Background: Effective staff-to-staff and patient-provider communication in the Emergency Department (ED) is essential for safe, quality care. Routine wearing of Personal-Protective-Equipment (PPE) has introduced new challenges to communication. We aimed to understand the perspectives of ED staff about communicating while wearing PPE, and to identify factors contributing to communication success, breakdown, and repair.

View Article and Find Full Text PDF

Chlorhexidine-loaded microneedles for treatment of oral diseases.

Int J Pharm

December 2024

Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel. Electronic address:

Chlorhexidine (CHX) is a gold standard therapeutic agent against clinical oral pathogens. However, its oral use is limited due to unpleasant taste, alteration in taste buds, staining of teeth and mucous membranes. Therefore, CHX-loaded PLGA microneedles (MNs) were fabricated for local and controlled release in the oral cavity, using a casting mold method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!