The mechanism of syncytium formation, caused by spike-induced cell-cell fusion in severe COVID-19, is largely unclear. Here we combine chemical genetics with 4D confocal imaging to establish the cell surface heparan sulfate (HS) as a critical host factor exploited by SARS-CoV-2 to enhance spike’s fusogenic activity. HS binds spike to facilitate ACE2 clustering, generating synapse-like cell-cell contacts to promote fusion pore formation. ACE2 clustering, and thus, syncytium formation is significantly mitigated by chemical or genetic elimination of cell surface HS, while in a cell-free system consisting of purified HS, spike, and lipid-anchored ACE2, HS directly induces ACE2 clustering. Importantly, the interaction of HS with spike allosterically enables a conserved ACE2 linker in receptor clustering, which concentrates spike at the fusion site to overcome fusion-associated activity loss. This fusion-boosting mechanism can be effectively targeted by an investigational HS-binding drug, which reduces syncytium formation and viral infection in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081376PMC
http://dx.doi.org/10.21203/rs.3.rs-2693563/v1DOI Listing

Publication Analysis

Top Keywords

syncytium formation
16
ace2 clustering
12
heparan sulfate
8
cell surface
8
ace2
6
formation
5
sulfate promotes
4
promotes ace2
4
ace2 super-cluster
4
super-cluster assembly
4

Similar Publications

SARS-CoV-2 is a viral infection, best studied in the context of epithelial cell infection. Epithelial cells, when infected with SARS-CoV-2 express the viral S-protein, which causes host cells to fuse together into large multi-nucleated cells known as syncytia. Because SARS-CoV-2 infections also frequently present with cardiovascular phenotypes, we sought to understand if S-protein expression would also result in syncytia formation in endothelial cells.

View Article and Find Full Text PDF

Epithelia are multicellular sheets that form barriers defining the internal and external environments. The constant stresses acting at this interface require that epithelial sheets are mechanically robust and provide a selective barrier to the hostile exterior. These properties are mediated by cellular junctions which are physically linked with heavily crosslinked cytoskeletal networks.

View Article and Find Full Text PDF

New insights into persistent corneal subepithelial infiltrates following epidemic keratoconjunctivitis: The first case report with ultrastructural and immunohistochemical investigations.

Acta Histochem

January 2025

Section of Anatomy and Histology, Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy. Electronic address:

Epidemic keratoconjunctivitis (EKC) is one of the most severe clinical manifestations of human adenovirus ocular surface infection, which may lead to the formation of subepithelial infiltrates (SEIs) in the anterior corneal stroma in 20-50 % of cases. SEIs may be asymptomatic or give rise to corneal aberrations and visual impairment for months or years after acute infection, despite treatments. Here, we describe the ultrastructural and immunophenotypic features of the anterior corneal stroma of a patient who underwent superficial anterior lamellar keratoplasty (SALK) surgery to remove corneal opacities related to clinically significant and steroid-unresponsive, long-lasting SEIs after adenoviral EKC.

View Article and Find Full Text PDF

Vacuolization of hematopoietic precursors cells is a common future of several otherwise non-related clinical settings such as VEXAS, Chediak-Higashi syndrome and Danon disease. Although these disorders have a priori nothing to do with one other from a clinical point of view, all share abnormal vacuolization in different cell types including cells of the erythroid/myeloid lineage that is likely the consequence of moderate to drastic dysfunctions in the ubiquitin proteasome system and/or the endo-lysosomal pathway. Indeed, the genes affected in these three diseases UBA1, LYST or LAMP2 are known to be direct or indirect regulators of lysosome trafficking and function and/or of different modes of autophagy.

View Article and Find Full Text PDF

Introduction: Coronavirus disease 2019 (COVID-19) is characterized by fever, fatigue, dry cough, dyspnea, mild pneumonia and acute lung injury (ALI), which can lead to acute respiratory distress syndrome (ARDS), and SARS-CoV-2 can accelerate tumor progression. However, the molecular mechanism for the increased mortality in cancer patients infected with COVID-19 is unclear.

Methods: Colony formation and wound healing assays were performed on Huh-7 cells cocultured with syncytia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!