A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Reevaluation of Cryolava Flow Evolution: Assumptions, Physical Properties, and Conceptualization. | LitMetric

Cryovolcanism has been invoked to explain numerous features observed on icy bodies. Many of these features show similar morphologies to volcanic features observed on Earth suggesting similar physics involved in their formation. Cryovolcanism lies at the intersection of volcanology and hydrology but as such, no one model from either discipline satisfactorily represents cryolava flow emplacement. We produced a new model for cryolava flow evolution that draws from both disciplines to track the physical, chemical, and thermal states of a hypothetical HO-NaCl flow on a Europa-like body as it evolves away from the vent. This model is currently restricted to compositions on the water-rich side of this chemical system and only predicts emplacement up to the turbulent to laminar transition. Modeling the laminar regime and a broader compositional space will be dealt with separately. Concentrations between 5 and 23 wt% (HO-NaCl eutectic) and initial flow thicknesses of 0.1, 1, 10, and 100 m were set as initial conditions. Model results suggest that flow may reach 40-60 vol% solids before transitioning to laminar flow. The thermal budget for these flows is dominated by the heat loss from vaporization in the low-pressure environment. This model produces length to thickness aspect ratios, for the given compositions, that are broadly consistent with candidate cryovolcanic features on Ceres and Titan. These first-order comparisons are not ideal and suggest the need for future modeling of cryovolcanic features in at least two dimensions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078481PMC
http://dx.doi.org/10.1029/2022JE007383DOI Listing

Publication Analysis

Top Keywords

cryolava flow
12
flow evolution
8
features observed
8
cryovolcanic features
8
flow
7
features
5
model
5
reevaluation cryolava
4
evolution assumptions
4
assumptions physical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!