Functions of exosomal non-coding RNAs to the infection with .

Front Immunol

Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China.

Published: April 2023

Tuberculosis (TB) is a major infectious disease induced by () which causes the world's dominant fatal bacterial contagious disease. Increasing studies have indicated that exosomes may be a novel option for the diagnosis and treatment of TB. Exosomes are nanovesicles (30-150 nm) containing lipids, proteins and non-coding RNAs (ncRNAs) released from various cells, and can transfer their cargos and communicate between cells. Furthermore, exosomal ncRNAs exhibit diagnosis potential in bacterial infections, including TB. Additionally, differential exosomal ncRNAs regulate the physiological and pathological functions of -infected cells and act as diagnostic markers for TB. This current review explored the potential biological roles and the diagnostic application prospects of exosomal ncRNAs, and included recent information on their pathogenic and therapeutic functions in TB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073540PMC
http://dx.doi.org/10.3389/fimmu.2023.1127214DOI Listing

Publication Analysis

Top Keywords

exosomal ncrnas
12
non-coding rnas
8
functions exosomal
4
exosomal non-coding
4
rnas infection
4
infection tuberculosis
4
tuberculosis major
4
major infectious
4
infectious disease
4
disease induced
4

Similar Publications

Background: Prostate cancer (PC) is the most frequently diagnosed cancer in men and continues to be a major cause of cancer-related mortality worldwide. In recent years, non-coding RNAs (ncRNAs) have emerged as a significant focus in molecular biology research, playing a pivotal role in the development and progression of PC. This study employed bibliometric analysis to explore the global outputs, research hotspots, and future trends in ncRNA-related PC research over the past 20 years.

View Article and Find Full Text PDF

Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Exosome-loading miR-205: a two-pronged approach to ocular neovascularization therapy.

J Nanobiotechnology

January 2025

Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.

Pathological neovascularization is a hallmark of many vision-threatening diseases. However, some patients exhibit poor responses to current anti-VEGF therapies due to resistance and limited efficacy. Recent studies have highlighted the roles of noncoding RNAs in various biological processes, paving the way for RNA-based therapeutics.

View Article and Find Full Text PDF

Little is known about how exclusive e-cigarette use affects exosomal microRNA (miRNA) expression, which is crucial in inflammation and disease processes like cancer. We compared exosomal miRNA profiles between exclusive e-cigarette users and non-users. We used plasma samples from 15 exclusive e-cigarette users and 15 non-users from the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014) and sequenced miRNAs with Illumina NextSeq 500/550.

View Article and Find Full Text PDF

Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!