A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single-cell protein activity analysis reveals a novel subpopulation of chondrocytes and the corresponding key master regulator proteins associated with anti-senescence and OA progression. | LitMetric

Background: Osteoarthritis (OA) is a prevalent senescence-related disease with substantial joint pain, loss of joint function, and cartilage degeneration. Because of the paucity of single-cell studies of OA and the gene dropout problem of single-cell RNA sequencing, it is difficult to acquire an in-depth understanding of the molecular characteristics of various chondrocyte clusters.

Methods: Here, we aimed to provide new insights into chondrocyte senescence and a rationale for the development of effective intervention strategies for OA by using published single-cell RNA-sequencing data sets and the metaVIPER algorithm (Virtual Inference of Protein activity by Enriched Regulon). This algorithm was employed to present a proteome catalog of 62,449 chondrocytes from the cartilage of healthy individuals and OA patients at single-cell resolution. Furthermore, histopathologic analysis was carried out in cartilage samples from clinical patients and experimental mouse models of OA to validate above results.

Results: We identified 16 protein-activity-based chondrocyte clusters as well as the underlying master regulators in each cluster. By assessing the enrichment score of each cluster in bulk RNA-sequencing data, followed by gene-set variation analysis, we preliminarily identified a novel subpopulation of chondrocytes (cluster 3). This clinically relevant cluster was predicted to be the main chondrocyte cluster responsible for maintaining cellular homeostasis and anti-senescence. Specifically, we uncovered a set of the key leading-edge proteins of cluster 3 by validating the robustness of the above results using another human chondrocyte single-cell RNA-sequencing data set, consisting of 24,675 chondrocytes. Furthermore, cartilage samples from clinical patients and experimental mouse models of OA were used to evaluate the expression patterns of these leading-edge proteins, and the results indicated that NDRG2, TSPYL2, JMJD6 and HMGB2 are closely associated with OA pathogenesis and might play critical roles in modulating cellular homeostasis and anti-senescence in chondrocytes.

Conclusion: Our study revealed a novel subpopulation of chondrocytes that are critical for anti-progression of OA and the corresponding master regulator proteins, which might serve as therapeutic targets in OA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077735PMC
http://dx.doi.org/10.3389/fimmu.2023.1077003DOI Listing

Publication Analysis

Top Keywords

novel subpopulation
12
subpopulation chondrocytes
12
rna-sequencing data
12
protein activity
8
master regulator
8
regulator proteins
8
single-cell rna-sequencing
8
chondrocytes cartilage
8
cartilage samples
8
samples clinical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!