Accurate earthquake location and magnitude estimation play critical roles in seismology. Recent deep learning frameworks have produced encouraging results on various seismological tasks (e.g., earthquake detection, phase picking, seismic classification, and earthquake early warning). Many existing machine learning earthquake location methods utilize waveform information from a single station. However, multiple stations contain more complete information for earthquake source characterization. Inspired by recent successes in applying graph neural networks (GNNs) in graph-structured data, we develop a Spatiotemporal Graph Neural Network (STGNN) for estimating earthquake locations and magnitudes. Our graph neural network leverages geographical and waveform information from multiple stations to construct graphs automatically and dynamically by adaptive message passing based on graphs' edges. Using a recent graph neural network and a fully convolutional neural network as baselines, we apply STGNN to earthquakes recorded by the Southern California Seismic Network from 2000 to 2019 and earthquakes collected in Oklahoma from 2014 to 2015. STGNN yields more accurate earthquake locations than those obtained by the baseline models and performs comparably in terms of depth and magnitude prediction, though the ability to predict depth and magnitude remains weak for all tested models. Our work demonstrates the potential of using GNNs and multiple stations for better automatic estimation of earthquake epicenters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078111 | PMC |
http://dx.doi.org/10.1029/2022JB024401 | DOI Listing |
Brief Bioinform
November 2024
Suzhou Key Lab of Multi-modal Data Fusion and Intelligent Healthcare, No. 1188 Wuzhong Avenue, Wuzhong District Suzhou, Suzhou 215004, China.
The automatic and accurate extraction of diverse biomedical relations from literature constitutes the core elements of medical knowledge graphs, which are indispensable for healthcare artificial intelligence. Currently, fine-tuning through stacking various neural networks on pre-trained language models (PLMs) represents a common framework for end-to-end resolution of the biomedical relation extraction (RE) problem. Nevertheless, sequence-based PLMs, to a certain extent, fail to fully exploit the connections between semantics and the topological features formed by these connections.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065, China.
Graph anomaly detection is crucial in many high-impact applications across diverse fields. In anomaly detection tasks, collecting plenty of annotated data tends to be costly and laborious. As a result, few-shot learning has been explored to address the issue by requiring only a few labeled samples to achieve good performance.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
School of Computer Science, Peking University, Beijing 100871, China.
Multi-agent systems often face challenges such as elevated communication demands, intricate interactions, and difficulties in transferability. To address the issues of complex information interaction and model scalability, we propose an innovative hierarchical graph attention actor-critic reinforcement learning method. This method naturally models the interactions within a multi-agent system as a graph, employing hierarchical graph attention to capture the complex cooperative and competitive relationships among agents, thereby enhancing their adaptability to dynamic environments.
View Article and Find Full Text PDFBrain Sci
December 2024
Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA.
Brain connectivity analysis plays a crucial role in unraveling the complex network dynamics of the human brain, providing insights into cognitive functions, behaviors, and neurological disorders. Traditional graph-theoretical methods, while foundational, often fall short in capturing the high-dimensional and dynamic nature of brain connectivity. Graph Neural Networks (GNNs) have recently emerged as a powerful approach for this purpose, with the potential to improve diagnostics, prognostics, and personalized interventions.
View Article and Find Full Text PDFBrain Sci
December 2024
Electric and Electronic Engineering Department, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey.
Background/objectives: This research investigates brain connectivity patterns in reaction to social and non-social stimuli within a virtual reality environment, emphasizing their impact on cognitive functions, specifically working memory.
Methods: Employing the LEiDA framework with EEG data from 47 participants, I examined dynamic brain network states elicited by social avatars compared to non-social stick cues during a VR memory task. Through the integration of LEiDA with deep learning and graph theory analyses, unique connectivity patterns associated with cue type were discerned, underscoring the substantial influence of social cues on cognitive processes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!