Spatiotemporal Graph Convolutional Networks for Earthquake Source Characterization.

J Geophys Res Solid Earth

Geophysics Group Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos NM USA.

Published: November 2022

Accurate earthquake location and magnitude estimation play critical roles in seismology. Recent deep learning frameworks have produced encouraging results on various seismological tasks (e.g., earthquake detection, phase picking, seismic classification, and earthquake early warning). Many existing machine learning earthquake location methods utilize waveform information from a single station. However, multiple stations contain more complete information for earthquake source characterization. Inspired by recent successes in applying graph neural networks (GNNs) in graph-structured data, we develop a Spatiotemporal Graph Neural Network (STGNN) for estimating earthquake locations and magnitudes. Our graph neural network leverages geographical and waveform information from multiple stations to construct graphs automatically and dynamically by adaptive message passing based on graphs' edges. Using a recent graph neural network and a fully convolutional neural network as baselines, we apply STGNN to earthquakes recorded by the Southern California Seismic Network from 2000 to 2019 and earthquakes collected in Oklahoma from 2014 to 2015. STGNN yields more accurate earthquake locations than those obtained by the baseline models and performs comparably in terms of depth and magnitude prediction, though the ability to predict depth and magnitude remains weak for all tested models. Our work demonstrates the potential of using GNNs and multiple stations for better automatic estimation of earthquake epicenters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078111PMC
http://dx.doi.org/10.1029/2022JB024401DOI Listing

Publication Analysis

Top Keywords

graph neural
16
neural network
16
multiple stations
12
earthquake
9
spatiotemporal graph
8
earthquake source
8
source characterization
8
accurate earthquake
8
earthquake location
8
earthquake locations
8

Similar Publications

BioGSF: a graph-driven semantic feature integration framework for biomedical relation extraction.

Brief Bioinform

November 2024

Suzhou Key Lab of Multi-modal Data Fusion and Intelligent Healthcare, No. 1188 Wuzhong Avenue, Wuzhong District Suzhou, Suzhou 215004, China.

The automatic and accurate extraction of diverse biomedical relations from literature constitutes the core elements of medical knowledge graphs, which are indispensable for healthcare artificial intelligence. Currently, fine-tuning through stacking various neural networks on pre-trained language models (PLMs) represents a common framework for end-to-end resolution of the biomedical relation extraction (RE) problem. Nevertheless, sequence-based PLMs, to a certain extent, fail to fully exploit the connections between semantics and the topological features formed by these connections.

View Article and Find Full Text PDF

Few-Shot Graph Anomaly Detection via Dual-Level Knowledge Distillation.

Entropy (Basel)

January 2025

National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065, China.

Graph anomaly detection is crucial in many high-impact applications across diverse fields. In anomaly detection tasks, collecting plenty of annotated data tends to be costly and laborious. As a result, few-shot learning has been explored to address the issue by requiring only a few labeled samples to achieve good performance.

View Article and Find Full Text PDF

Multi-agent systems often face challenges such as elevated communication demands, intricate interactions, and difficulties in transferability. To address the issues of complex information interaction and model scalability, we propose an innovative hierarchical graph attention actor-critic reinforcement learning method. This method naturally models the interactions within a multi-agent system as a graph, employing hierarchical graph attention to capture the complex cooperative and competitive relationships among agents, thereby enhancing their adaptability to dynamic environments.

View Article and Find Full Text PDF

Graph Neural Networks in Brain Connectivity Studies: Methods, Challenges, and Future Directions.

Brain Sci

December 2024

Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA.

Brain connectivity analysis plays a crucial role in unraveling the complex network dynamics of the human brain, providing insights into cognitive functions, behaviors, and neurological disorders. Traditional graph-theoretical methods, while foundational, often fall short in capturing the high-dimensional and dynamic nature of brain connectivity. Graph Neural Networks (GNNs) have recently emerged as a powerful approach for this purpose, with the potential to improve diagnostics, prognostics, and personalized interventions.

View Article and Find Full Text PDF

Background/objectives: This research investigates brain connectivity patterns in reaction to social and non-social stimuli within a virtual reality environment, emphasizing their impact on cognitive functions, specifically working memory.

Methods: Employing the LEiDA framework with EEG data from 47 participants, I examined dynamic brain network states elicited by social avatars compared to non-social stick cues during a VR memory task. Through the integration of LEiDA with deep learning and graph theory analyses, unique connectivity patterns associated with cue type were discerned, underscoring the substantial influence of social cues on cognitive processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!