Globally, metabolic diseases are becoming a major public health problem. Herbal medicines are medicinal materials or preparations derived from plants and are widely used in the treatment of metabolic diseases due to their good curative effects and minimal side effects. Recent studies have shown that gut microbiota plays an important role in the herbal treatment of metabolic diseases. However, the mechanisms involved are still not fully understood. This review provides a timely and comprehensive summary of the interactions between herbal medicines and gut microbiota in metabolic diseases. Mechanisms by which herbal medicines treat metabolic diseases include their effects on the gut microbial composition, the intestinal barrier, inflammation, and microbial metabolites (e.g., short-chain fatty acids and bile acids). Herbal medicines can increase the abundance of beneficial bacteria (e.g., and ), reduce the abundance of harmful bacteria (e.g., -), protect the intestinal barrier, and alleviate inflammation. In turn, gut microbes can metabolize herbal compounds and thereby increase their bioavailability and bioactivity, in addition to reducing their toxicity. These findings suggest that the therapeutic effects of herbal medicines on metabolic diseases are closely related to their interactions with the gut microbiota. In addition, some methods, and techniques for studying the bidirectional interaction between herbal medicines and gut microbiota are proposed and discussed. The information presented in this review will help with a better understanding of the therapeutic mechanisms of herbal medicines and the key role of gut microbiota.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079915 | PMC |
http://dx.doi.org/10.3389/fphar.2023.1105405 | DOI Listing |
Sci Rep
December 2024
Consumer and Design Sciences, College of Human Science Auburn University, Auburn, Alabama, USA.
Bermuda grass (Cynodon dactylon) is a tropical grass found in all tropical and subtropical areas. It is widely found in Bangladesh and well known for its antimicrobial properties. Cotton gauze is a woven cloth which is used for wound dressing and wound cushioning.
View Article and Find Full Text PDFSci Rep
December 2024
The University of Trans-Disciplinary Health Sciences and Technology (TDU), 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru, 560 064, India.
Triphala is a traditional Ayurvedic herbal formulation composed of three fruits: amla (Phyllanthus emblica), bibhitaki (Terminalia bellerica), and haritaki (Terminalia chebula). Triphala is a potent Ayurvedic remedy that promotes digestion, detoxification, and overall wellness, while also providing antioxidant benefits through its trio of nutrient-rich fruits. In order to elucidate the individual contributions of the three ingredients of Triphala from molecular perspective, the individual ingredients were used for the untargeted LCMS/MS analysis.
View Article and Find Full Text PDFZ Naturforsch C J Biosci
January 2025
Laboratory of Molecular Chemistry and Natural Substances, Faculty of Sciences of Meknes, 11201 Zitoune-Meknes B.P, Meknes, Meknes, Morocco.
In order to search for new chemotypes and to carry out a comparative study with the literature, the current study investigated the chemical composition of the essential oil of the flowers of (L.) ssp. using gas chromatography coupled with mass spectrometry (GC-MS).
View Article and Find Full Text PDFJ Sep Sci
January 2025
School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Medicines, Kunming Medical University, Kunming, Yunnan, People's Republic of China.
This study revealed the dynamic profiling of three main components of Portulaca oleracea L. in vivo in rats, namely allantoin (A), N-trans-feruloyl-3-methoxytyramine (M), and N-p-coumaroyltyramine (C). A sensitive and efficient UHPLC-ESI-Q-TOF/HRMS, including an optimized separation process, was applied to their qualitative and quantitative analysis.
View Article and Find Full Text PDFJ Pept Sci
February 2025
Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, UP, India.
Interactions between aromatic side chains of amino acids stabilize the fold and assembly of short peptides. The aromatic π…π and C-H…π interactions have been widely explored in the design of short peptides with specific folding and aggregation patterns. In the present study, we investigated the effect of homologated phenylalanine side chains on the conformation and assembly of peptide helices through X-ray crystallographic structure determination and analysis of five pentapeptides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!