The high-throughput short-reads RNA-seq protocols often produce paired-end reads, with the middle portion of the fragments being unsequenced. We explore if the full-length fragments can be computationally reconstructed from the sequenced two ends in the absence of the reference genome - a problem here we refer to as de novo bridging. Solving this problem provides longer, more informative RNA-seq reads, and benefits downstream RNA-seq analysis such as transcript assembly, expression quantification, and splicing differential analysis. However, de novo bridging is a challenging and complicated task owing to alternative splicing, transcript noises, and sequencing errors. It remains unclear if the data provides sufficient information for accurate bridging, let alone efficient algorithms that determine the true bridges. Methods have been proposed to bridge paired-end reads in the presence of reference genome (called reference-based bridging), but the algorithms are far away from scaling for de novo bridging as the underlying compacted de Bruijn graph(cdBG) used in the latter task often contains millions of vertices and edges. We designed a new truncated Dijkstra's algorithm for this problem, and proposed a novel algorithm that reuses the shortest path tree to avoid running the truncated Dijkstra's algorithm from scratch for all vertices for further speeding up. These innovative techniques result in scalable algorithms that can bridge all paired-end reads in a cdBG with millions of vertices. Our experiments showed that paired-end RNA-seq reads can be accurately bridged to a large extent. The resulting tool is freely available at https://github.com/Shao-Group/rnabridge-denovo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081347PMC

Publication Analysis

Top Keywords

novo bridging
16
paired-end reads
12
paired-end rna-seq
8
reference genome
8
rna-seq reads
8
bridge paired-end
8
millions vertices
8
truncated dijkstra's
8
dijkstra's algorithm
8
paired-end
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!