Twelve novel organotin(iv) complexes (1-12) of -acetylated β-amino acids (L-L) were synthesized and characterized by elemental analysis, FTIR, multinuclear (H, C, Sn) NMR, EI-MS and powder XRD techniques. The XRD results determined lattice parameters, average particle size, and intrinsic strain and confirmed the crystalline nature of complexes as face centered cubic phases. Molecular docking analysis using a catalytic pocket of the enzyme indicated that most of the compounds displayed a well-fitted orientation and occupied important amino acids in the enzyme's catalytic pocket. Furthermore, inhibitory activity results revealed that L and complexes 4, 6 and 10 showed the highest activity with IC values of 21.54 ± 0.45, 37.96 ± 0.81 and 35.20 ± 1.02, respectively, compared to standard acarbose with an IC value of 42.51 ± 0.21. In addition, antidiabetic activity of selected compounds using alloxan induced diabetic rabbits showed that L and complexes 4, 6, 10, 12 showed significant activities like standard metformin. Anti-bacterial activity against the selected Gram-positive and Gram-negative bacterial strains has the following order > > > . Similarly, antioxidant activity by the DPPH scavenging method was also studied with following results: triorganotin > diorganotin > ligands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074041PMC
http://dx.doi.org/10.1039/d2ra06718hDOI Listing

Publication Analysis

Top Keywords

organotiniv complexes
8
-acetylated β-amino
8
β-amino acids
8
molecular docking
8
catalytic pocket
8
activity selected
8
complexes
5
activity
5
biologically potent
4
potent organotiniv
4

Similar Publications

Four organotin(IV) carboxylate complexes; (CH)SnL (), CHSnL (), (CH)SnL () and (CH)SnL () are synthesized by the condensation reaction of organotin(IV) chlorides with sodium-4-chloro-2-methylphenoxyacetate (). The FT-IR spectra suggested bridging/chelating bidentate coordination of the ligand to the tin atom. Single-crystal XRD analysis authenticated the FT-IR findings for and .

View Article and Find Full Text PDF

Anticancer behavior of cyclometallated iridium(III)-tributyltin(IV) carboxylate schiff base complexes with aggregation-induced emission.

J Inorg Biochem

January 2025

Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China. Electronic address:

Cyclometallated iridium(III) and organotin(IV) carboxylate complexes have shown potential application value in the field of anticancer. However, the widespread aggregation-caused quenching (ACQ) effect of these complexes is not conducive to the exploration of their targeting and anticancer mechanism, and the idea of aggregation-induced emission (AIE) effect can effectively solve this problem. Then, AIE-activated cyclometallated iridium(III)-tributyltin(IV) carboxylate Schiff base complexes were designed and prepared in this study.

View Article and Find Full Text PDF

Synthesis, structures, and cytotoxicity insights of organotin(IV) complexes with thiazole-appended pincer ligand.

J Inorg Biochem

January 2025

Department of Chemistry, University of Kentucky, 506 Library Drive, 146 Chemistry-Physics Building, Lexington, KY 40506-0055, USA. Electronic address:

Article Synopsis
  • Diorganotin complexes with various compositions were synthesized by reacting organotin oxides with a specific ligand in toluene, and a mono-n-butyltin complex was prepared using acetonitrile.
  • These complexes were characterized through techniques like FT-IR, NMR spectroscopy, and X-ray diffraction, revealing their coordinated structures and forms.
  • The antitumor activities of the first five complexes were tested on T-47D breast cancer cells, with compound 3 showing the highest effectiveness and potential for selective toxicity, positioning it as a promising candidate for breast cancer treatment.
View Article and Find Full Text PDF

Infectious diseases have a significant impact in the historical trajectory of humanity, exerting profound influence on societies, driving advancements in medical science, and significantly impacting individuals on a worldwide scale. Consequently, this research endeavours to identify potent agents combatting tuberculosis, inflammation, and microbial deformities. The investigation focuses on hydrazones (1,2) endowed eight organotin(IV) complexes, where hydrazones were derived from 2-acetyl-1H-indene-1,3(2H)-dione and 2-phenoxypropanehydrazide/2-(2,4-dichlorophenoxy)propanehydrazide.

View Article and Find Full Text PDF

Organotin(IV) complexes derived from 2,6-diacetylpyridine bis(2-hydroxybenzoylhydrazone) as prospective anti-proliferative agents: Synthesis, characterization, structures and in vitro anticancer activity.

J Inorg Biochem

December 2024

Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. Electronic address:

Six organotin(IV) complexes, viz., [MeSn(L)] (1), [n-BuSn(L)] (2), [n-OctSn(L)] (3), [BzSn(L)]·0.5CH (4), [n-BuSn(L)Cl] (5), and [PhSn(L)Cl] (6), were synthesized using a 2,6-diacetylpyridine bis(2-hydroxybenzoylhydrazone), HL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!