We explored a series of cyclodextrin (CyD) polymers composed either of a single CyD type or a mixture of two CyD types to encapsulate simultaneously different compounds with potential therapeutic interest for multimodal prostate cancer treatment. New mixed CyD polymers were prepared in alkaline water starting from the naturally occurring monomers and a low-cost crosslinking agent. Batches of 200 g of polymer were easily obtained. By means of optical spectroscopy we proved the co-encapsulation of 3 compounds in the polymers: the drugs cabazitaxel (CBX) and bicalutamide (BIC), and the photosensitizer chlorin e6 (Ce6). pβCyD and mixed pαβCyD polymers performed best for single drug solubilization. In the co-encapsulation of BIC and CBX by pβCyD and pαβCyD, pβCyD stands out in drug solubilization ability. Avoiding the use of organic solvents, it was possible to dissolve up to 0.1 mM CBX with 10 mg ml pβCyD polymer and, with 100 mg ml, even 1.7 mM BIC, a 100-fold improvement compared to water. Spectroscopic studies afforded the binding constants of CBX and BIC with pβCyD forming complexes of 1 : 2 stoichiometry (drug : CyD) and CBX displayed significantly higher affinity. Also DFT calculations suggested that the drugs are more stable when complexed by two CyD units. Ce6 could be encapsulated simultaneously with the other two drugs in pβCyD and, most importantly, is able to produce singlet oxygen efficiently. Thanks to a single inexpensive CyD-based polymer we were able to produce a three-in-one platform for future implementation of combined chemotherapy and photodynamic therapy. These achievements are most relevant as nanomedicines are continuously proposed but their potential for translation to the pharma industry is compromised by their limited potential for industrial upscale.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077339 | PMC |
http://dx.doi.org/10.1039/d3ra01782f | DOI Listing |
J Mater Chem B
August 2024
Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Via Gobetti 101, 40129 Bologna, Italy.
Water-soluble polymers of cyclodextrins (CyD) can be easily obtained in alkaline media following polycondensation of the naturally occurring monomers in the presence of a crosslinking agent. They can be further modified to customize specifically functionalized architectures. Compared to other macromolecules natural and not, the CyD polymers are endowed with a unique feature, the cone-shaped cavities where they can host guests of various nature.
View Article and Find Full Text PDFJCI Insight
April 2024
Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
Central for wound healing is the formation of granulation tissue, which largely consists of collagen and whose importance stretches past wound healing, including being implicated in both fibrosis and skin aging. Cyclophilin D (CyD) is a mitochondrial protein that regulates the permeability transition pore, known for its role in apoptosis and ischemia-reperfusion. To date, the role of CyD in human wound healing and collagen generation has been largely unexplored.
View Article and Find Full Text PDFPharmaceutics
April 2023
Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
Inhaled corticosteroids are the mainstay in the management of lung inflammation associated to chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Nonetheless, available inhalation products are mostly short-acting formulations that require frequent administrations and do not always produce the desired anti-inflammatory effects. In this work, the production of inhalable beclomethasone dipropionate (BDP) dry powders based on polymeric particles was attempted.
View Article and Find Full Text PDFRSC Adv
April 2023
Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR) Via P. Gobetti 101 I-40129 Bologna Italy
We explored a series of cyclodextrin (CyD) polymers composed either of a single CyD type or a mixture of two CyD types to encapsulate simultaneously different compounds with potential therapeutic interest for multimodal prostate cancer treatment. New mixed CyD polymers were prepared in alkaline water starting from the naturally occurring monomers and a low-cost crosslinking agent. Batches of 200 g of polymer were easily obtained.
View Article and Find Full Text PDFChemistry
May 2023
Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), via P. Gobetti 101, 40129, Bologna, Italy.
In the quest for new therapies targeting hypoxia, aromatic endoperoxides have intriguing potential as oxygen releasing agents (ORAs) able to free O in tissues upon suitable trigger. Four aromatic substrates were synthesized and the formation of their corresponding endoperoxides was optimized in organic solvent upon selective irradiation of Methylene Blue, a low-cost photocatalyst, producing the reactive singlet oxygen species. Complexation of the hydrophobic substrates within a hydrophilic cyclodextrin (CyD) polymer allowed their photooxygenation in homogeneous aqueous environment using the same optimized protocol upon dissolution in water of the three readily accessible reagents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!