We present nighttime worldwide distributions of key features of Blue LUminous Events (BLUEs) detected by the Modular Multispectral Imaging Array of the Atmosphere-Space Interaction Monitor. Around 10% of all detected BLUEs exhibit an impulsive single pulse shape. The rest of BLUEs are unclear (impulsive or not) single, multiple or with ambiguous pulse shapes. BLUEs exhibit two distinct populations with peak power density <25 µWm (common) and ≥25 µWm (rare) with different rise times and durations. The altitude (and depth below cloud tops) zonal distribution of impulsive single pulse BLUEs indicate that they are commonly present between cloud tops and a depth of ≤4 km in the tropics and ≤1 km in mid and higher latitudes. Impulsive single pulse BLUEs in the tropics are the longest (up to ∼4 km height) and have the largest number of streamers (up to ∼3 × 10). Additionally, the analysis of BLUEs has turned out to be particularly complex due to the abundance of radiation belt particles (at high latitudes and in the South Atlantic Anomaly [SAA]) and cosmic rays all over the planet. True BLUEs can not be fully distinguished from radiation belt particles and cosmic rays unless other ground-based measurements associated with the optically detected BLUEs are available. Thus, the search algorithm of BLUEs presented in Soler et al. (2021), https://doi.org/10.1029/2021gl094657 is now completed with a new additional step that, if used, can considerably smooth the SAA shadow but can also underestimate the number of BLUEs worldwide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078277PMC
http://dx.doi.org/10.1029/2022JD037535DOI Listing

Publication Analysis

Top Keywords

key features
8
blues exhibit
8
impulsive single
8
global distribution
4
distribution key
4
features streamer
4
streamer corona
4
corona discharges
4
discharges thunderclouds
4
thunderclouds nighttime
4

Similar Publications

3D Printed Titanium Scaffolds with Bi-Directional Gradient QK-Functionalized Surface.

Adv Mater

January 2025

National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.

3D printed titanium scaffold has promising applications in orthopedics. However, the bioinert titanium presents challenges for promoting vascularization and tissue growth within the porous scaffold for stable osteointegration. In this study, a modular porous titanium scaffold is created using 3D printing and a gradient-surface strategy to immobilize QK peptide on the surface with a bi-directional gradient distribution.

View Article and Find Full Text PDF

Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.

View Article and Find Full Text PDF

Gastric Cancer Models Developed via GelMA 3D Bioprinting Accurately Mimic Cancer Hallmarks, Tumor Microenvironment Features, and Drug Responses.

Small

January 2025

Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.

Current in vitro models for gastric cancer research, such as 2D cell cultures and organoid systems, often fail to replicate the complex extracellular matrix (ECM) found in vivo. For the first time, this study utilizes a gelatin methacryloyl (GelMA) hydrogel, a biomimetic ECM-like material, in 3D bioprinting to construct a physiologically relevant gastric cancer model. GelMA's tunable mechanical properties allow for the precise manipulation of cellular behavior within physiological ranges.

View Article and Find Full Text PDF

Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.

Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.

View Article and Find Full Text PDF

Enhancing Flexible Perovskite Photovoltaic Cells and Modules Through Light-Trapping and Light-Shifting Strategies.

Small Methods

January 2025

Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong, 510632, China.

Flexible perovskite photovoltaic devices are typically constructed on flexible polyethylene naphthalate (PEN) substrates, which exhibit near-ultraviolet absorption and high visible-light reflection, leading to significant optical losses. To address this issue, a reusable optical-management sticker tailored for flexible substrates has been proposed in this work. The sticker incorporates a light-shifting material that converts near-ultraviolet light into visible light, enabling photoelectric conversion of near-ultraviolet light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!