Various Forms of Silicon Electronic Waste and Predisposition to Cancer.

J Cancer Prev

Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India.

Published: March 2023

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080016PMC
http://dx.doi.org/10.15430/JCP.2023.28.1.1DOI Listing

Publication Analysis

Top Keywords

forms silicon
4
silicon electronic
4
electronic waste
4
waste predisposition
4
predisposition cancer
4
forms
1
electronic
1
waste
1
predisposition
1
cancer
1

Similar Publications

Detecting small concentrations of nitro-compounds surface-enhanced Raman spectroscopy (SERS) is reported. In particular, explosive analogues, such as 4-nitrophenol, 1-nitronaphthalene, and 5-nitroisoquinoline, and an explosive material (picric acid) are investigated and prepared by measurements using two different methods. One method involved mixing the analyte with plasmonic silver nanoparticles (Ag NPs) in a solution, followed by subsequent drop-casting of the mixture onto a silicon substrate.

View Article and Find Full Text PDF

Facilitated Self-Adjusting Mechanism with Mn Additive in Electrolyte for Ammonium-Ion Hybrid Supercapacitors.

Small

January 2025

State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

Ammonium-ion hybrid supercapacitors (AIHSCs) have gained extensive attention due to their high safety and environmental friendliness. Manganese oxides are among the most promising cathode materials; however, the side electrochemical reactions occurring in aqueous electrolytes limit their reversible capacities and energy densities. This work prepares the β-/γ-MnO electrode and reveals the side electrochemical reactions occurring in the (NH)SO electrolyte.

View Article and Find Full Text PDF

Artificial bone, primarily composed of calcium carbonate, demonstrates a higher resorption rate than calcium phosphate-based counterparts, suggesting potential for early bone replacement. Animal experiments using porous calcium carbonate ceramics have demonstrated bone formation superior to commercially available artificial bone after short-term implantation. Long-term implantation has yielded suboptimal results owing to resorption of both newly formed bone and implantation material.

View Article and Find Full Text PDF

Realizing high power factor and thermoelectric performance in band engineered AgSbTe.

Nat Commun

January 2025

Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.

Article Synopsis
  • AgSbTe is a promising p-type thermoelectric material that has seen improvements focused on reducing lattice thermal conductivity, but its low power factor limits device performance.
  • Recent research shows that doping AgSbTe with Sn creates a new impurity band, enhancing electrical properties and achieving a record-high power factor of 27 μWcmK and a peak thermoelectric figure of merit zT of 2.5 at 673 K.
  • The improved performance is due to increased hole concentration and reduced bipolar conductivity, resulting in an efficient thermoelectric device with energy conversion efficiencies of 12.1% and a power density of 1.13 Wcm.
View Article and Find Full Text PDF

Electrochemical stability of electrospun silicon/carbon nanofiber anode materials: a review.

Phys Chem Chem Phys

January 2025

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

Silicon (Si) is regarded as a promising anode material owing to its high specific capacity and low lithiation potential. The large volume change and the pulverization of silicon during the lithiation/delithiation process hinder its direct energy storage application. This review focuses on the electrospun silicon/carbon (Si/C) nanofiber anode materials for lithium-ion batteries for long-term stable energy storage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!