Martian atmospheric dust is a major driver of weather, with feedback between atmospheric dust distribution, circulation changes from radiative heating and cooling driven by this dust, and winds that mobilize surface dust and distribute it in the atmosphere. Wind-driven mobilization of surface dust is a poorly understood process due to significant uncertainty about minimum wind stress and whether the saltation of sand particles is required. This study utilizes video of six Ingenuity helicopter flights to measure dust lifting during helicopter ascents, traverses, and descents. Dust mobilization persisted on takeoff until the helicopter exceeded 3 m altitude, with dust advecting at 4-6 m/s. During landing, dust mobilization initiated at 2.3-3.6 m altitude. Extensive dust mobilization occurred during traverses at 5.1-5.7 m altitude. Dust mobilization threshold friction velocity of rotor-induced winds during landing is modeled at 0.4-0.6 m/s (factor of two uncertainty in this estimate), with higher winds required when the helicopter was over undisturbed terrain. Modeling dust mobilization from >5 m cruising altitude indicates mobilization by 0.3 m/s winds, suggesting nonsaltation mechanisms such as mobilization and destruction of dust aggregates. No dependence on background winds was seen for the initiation of dust lifting but one case of takeoff in 7 m/s winds created a track of darkened terrain downwind of the helicopter, which may have been a saltation cluster. When the helicopter was cruising at 5-6 m altitude, recirculation was seen in the dust clouds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078181PMC
http://dx.doi.org/10.1029/2022JE007605DOI Listing

Publication Analysis

Top Keywords

dust mobilization
20
dust
16
ingenuity helicopter
8
atmospheric dust
8
surface dust
8
mobilization
8
dust lifting
8
altitude dust
8
helicopter
7
winds
6

Similar Publications

Sandstorms contribute to the atmospheric microplastic pollution: Transport and accumulation from degraded lands to a megacity.

J Hazard Mater

December 2024

State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China. Electronic address:

Surface dust from degraded lands is a major global aerosol source, mobilized by meteorological events like sandstorms. Microplastics (MPs) in dust can be enriched in the atmosphere and transported over long distances to sensitive regions during sandstorms. This study was conducted in a megacity frequently impacted by sandstorms in spring, exploring the influx, characteristics, enrichment mechanism, and transport pathway of sandstorm-derived MPs.

View Article and Find Full Text PDF

Rising surface temperatures are projected to cause more frequent and intense droughts in the world's drylands. This can lead to land degradation, mobilization of soil particles, and an increase in dust aerosol emissions from arid and semi-arid regions. Dust aerosols are a key source of bio-essential nutrients, can be transported in the atmosphere over large distances, and ultimately deposited onto the ocean's surface, alleviating nutrient limitation and increasing oceanic primary productivity.

View Article and Find Full Text PDF

We present first experimental results showing that single dust particles on a dielectric surface are mobilized and lofted due to exposure to an electron beam or ultraviolet radiation. It is shown that secondary electrons and/or photoelectrons emitted from a substrate surface are recollected on the surfaces within microcavities between a dust particle and the substrate surface, resulting in large negative charges and subsequently causing mobilization of the dust particle due to Coulomb repulsion. Dust mobility tested against the electron beam energy is shown to follow the secondary electron yield curve of the substrate surface in both the experimental and modeling results.

View Article and Find Full Text PDF

In agricultural regions prone to dust storms, heavy metal contamination of soil and crops from airborne particulates poses significant risks to food safety and public health. This study has assessed the potential of machine learning models for predicting concentrations of toxic heavy metals like arsenic, chromium, and lead in dust from the agricultural Sistan region of southeastern Iran. This region experiences frequent dust storms mobilizing particulates from local dried lakes onto agricultural lands.

View Article and Find Full Text PDF

The increasing prevalence of microplastics (MP) in urban environments has raised concerns over their negative effects on ecosystems and human health. Stormwater runoff, and road dust and sediment, act as major vectors of these pollutants into natural water bodies. Sustainable urban drainage systems, such as permeable pavements, are considered as potential tools to retain particulate pollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!