Infectious diseases caused by filarial nematodes are major health problems for humans and animals globally. Current treatment using anti-helminthic drugs requires a long treatment period and is only effective against the microfilarial stage. Most species of filarial nematodes harbor a specific strain of bacteria, which are essential for the survival, development, and reproduction of the nematodes. This parasite-bacteria obligate symbiosis offers a new angle for the cure of filariasis. In this study, we utilized publicly available genome data and putative protein sequences from seven filarial nematode species and their symbiotic to screen for protein-protein interactions that could be a novel target against multiple filarial nematode species. Genome-wide screening was performed to predict molecular interactions based on co-evolutionary signals. We identified over 8,000 pairs of gene families that show evidence of co-evolution based on high correlation score and low false discovery rate (FDR) between gene families and obtained a candidate list that may be keys in filarial nematode- interactions. Functional analysis was conducted on these top-scoring pairs, revealing biological processes related to various signaling processes, adult lifespan, developmental control, lipid and nucleotide metabolism, and RNA modification. Furthermore, network analysis of the top-scoring genes with multiple co-evolving pairs suggests candidate genes in both and the nematode that may play crucial roles at the center of multi-gene networks. A number of the top-scoring genes matched well to known drug targets, suggesting a promising drug-repurposing strategy that could be applicable against multiple filarial nematode species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073474 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1052352 | DOI Listing |
Parasite
January 2025
Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
Culicoides biting midges (Diptera: Ceratopogonidae) have been reported as potential vectors for haemoparasites. Information about host-vector-parasite specificity is required to confirm their status. Here, molecular detection of haemosporidians, Leishmania, trypanosomatids, and filarial nematodes in biting midges was conducted to understand their potential role as vectors, and their host preference was determined.
View Article and Find Full Text PDFJ Med Entomol
January 2025
Center for Vector Biology & Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA.
Filarial nematodes are parasitic roundworms transmitted by mosquitoes that can cause morbidity and mortality for their human and animal hosts. The filariae community, specifically infection prevalence of heartworm, Dirofilaria immitis (Filarioidea: Onchocercidae) (Leidy), and its primary mosquito vector species, has not been described in Connecticut since 1977. In light of the recent invasion and establishment of an important filariasis vector, Aedes albopictus (Diptera: Culicidae) (Skuse), we used molecular-based sequencing methods to identify filarial species infecting field-caught mosquitoes in Connecticut, United States.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.
Background: Lymphatic filariasis (LF), a mosquito-borne parasitic disease caused by three species of filarial worms, was first detected in Niue, a small Pacific Island nation of approximately 1,600 people, in 1954. After extensive efforts involving multiple rounds of Mass Drug Administration, Niue was validated by the World Health Organization (WHO) as having e4liminated LF as a public health problem in 2016. However, no surveillance has been conducted since validation to confirm infection rates have remained below WHO's elimination threshold.
View Article and Find Full Text PDFFront Trop Dis
December 2024
Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
Background: is transmitted by species and affects hundred millions of inhabitants in about 33 countries in sub-Saharan Africa. It is known that Mansonellosis due to do not result in a clear clinical picture, but down-regulates the immunity of patients predisposing them to other diseases like tuberculosis, HIV and malaria or damping vaccine efficacy. However, research about novel drugs against this filarial nematode is missing because of the lack of parasite material.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
is a common intracellular bacterial genus that infects numerous arthropods and filarial nematodes. In arthropods, it typically acts as a reproductive parasite, leading to various phenotypic effects such as cytoplasmic incompatibility, parthenogenesis, feminization, or male-killing. Quill mites (Acariformes: Syringophilidae) are a group of bird parasites that have recently attracted increasing interest due to the detection of unique phylogenetic lineages of endosymbiotic bacteria and potentially pathogenic taxa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!