Ethnopharmacological Relevance: Tongsaimai (TSM) is a traditional Chinese medicine that has several therapeutic qualities, including anti-inflammatory, anti-oxidative, and anti-vasculitis effects. However, its impacts and underlying mechanisms on wound healing remain unclear.
Aim Of The Study: The aim of our study was to evaluate TSM for its pro-healing effect and the relevant mechanisms using both experimental validation and network pharmacology analysis.
Materials And Methods: The components of TSM were detected by high-performance liquid chromatography combined with diode array detector (HPLC-DAD). Skin wounds with a diameter of 4 mm were created on the backs of mice, after which, topical treatments of 2.5-10% TSM were applied onto the lesions once daily for either 2 or 7 days. Then, the wound tissues were collected to determine the impacts of TSM on collagen deposition, epithelial cell proliferation, oxidative stress, inflammation, and angiogenesis. Moreover, the effects of TSM (0.5-2 mg/mL) on the cell viability of HUVECs and HaCaT cells were evaluated.
Results: A total of 11 components in TSM were identified by HPLC-DAD. TSM was found to enhance the rate of wound contraction and increase epithelial thickness and collagen deposition during the healing process. In addition, TSM increased SOD activity and downregulated MDA and IL-1β levels in the wound tissues. Immunofluorescence analysis further indicated an increased expression of Ki67, CD31, and VEGF in wound tissues following TSM administration. Results of the network pharmacology analysis revealed that multiple pathways including VEGF, PI3K/Akt, and MAPK pathways were involved in the pharmacological actions of TSM on wound healing. Accordantly, in vitro experiments revealed that TSM promoted the proliferation of HUVECs and HaCaT cells while activating the PI3K/Akt pathway.
Conclusions: Our results suggest that TSM may serve as a therapeutic medication to improve wound healing by employing multiple regulatory mechanisms that affect proliferation, angiogenesis, collagen deposition, oxidative stress, and inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2023.116451 | DOI Listing |
Ann N Y Acad Sci
January 2025
Department of Biology, University of Kentucky, Lexington, Kentucky, USA.
Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Laboratory Medicine, School of Chemical Science and Engineering, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200092, P. R. China.
The healing of bacterial biofilm-infected wounds is a complex process, and the construction of emerging therapeutic modalities that regulate the microenvironment to magnify therapeutic effects and reduce biotoxicity is still highly challenging. Herein, an engineered microneedle (MN) patch is reported to mediate the efficient delivery of black phosphorus nanosheets (BP NSs) and copper peroxide nanodots (CP NDs) for dual nanodynamic sterilization and methicillin-resistant staphylococcus aureus (MRSA)-infected wound healing. Results demonstrate that the system can eliminate biofilm, reduce cytotoxicity, promote angiogenesis and tissue regeneration by the multiple advantages of chemodynamic therapy (CDT), enhanced photodynamic therapy (PDT), and improved degradation process from BP NSs to phosphate for promoting cell proliferation.
View Article and Find Full Text PDFJ Am Acad Orthop Surg
January 2025
From the Department of Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, AL (Yeager, Rutz, Strother, Spitler, and Johnson), and the Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL (Gross, Benson, and Carter).
Introduction: Postoperative infections are a leading cause of morbidity following fracture repair. The purpose of this study is to develop a risk score predicting fracture-related infection (FRI) that will require one versus multiple revision surgeries related to infection eradication and bone healing.
Methods: This is a retrospective cohort study conducted at a single level I trauma center from 2013 to 2020.
J Cell Mol Med
January 2025
Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
Impaired wound healing affects the life quality of patients and causes a substantial financial burden. Hydrogen-rich medium is reported to have antioxidant and anti-inflammatory effects. However, the role of hydrogen-rich saline (HRS) in cutaneous wound healing remains largely unexplored, especially by metabolomics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
The treatment of diabetic foot ulcers (DFUs) represents a significant challenge due to the complexity of the wound microenvironment. Several factors, including infection, inflammation, and impaired angiogenesis, can complicate the healing process and reduce the effectiveness of current clinical treatments. To address these challenges, this work develops a multifunctional sponge containing a zeolitic imidazolate framework-8/bacterial cellulose (ZIF-8/BC) matrix loaded with the antioxidant naringin (Nar).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!