When a different types of reactor are operating at the same area and the same period of time, released radionuclides are hard to follow in the environment. In general, isotopic techniques can be used for source localization. To obtain the distribution of hydrogen isotope in soil, eight sampling points were selected along the local dominant wind direction with different distances away from Qinshan Nuclear Power Plant, and soil samples at different depths (0-2, 2-5, 5-10, 10-20, 20-30 cm) were collected in December 2019 and December 2020, respectively. The concentrations of hydrogen isotopes were measured in the soil samples at different depth. The spatial distribution of tritium and deuterium in the surface soil was related to soil properties and the distance from the nuclear power plant. It was found that tritium and deuterium are generally enriched in the upper layer. Determination of the deuterium concentration in the environment may be a new way to trace the released tritium from the reactors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2023.107170 | DOI Listing |
Sci Rep
January 2025
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
In this paper, a comprehensive energy management framework for microgrids that incorporates price-based demand response programs (DRPs) and leverages an advanced optimization method-Greedy Rat Swarm Optimizer (GRSO) is proposed. The primary objective is to minimize the generation cost and environmental impact of microgrid systems by effectively scheduling distributed energy resources (DERs), including renewable energy sources (RES) such as solar and wind, alongside fossil-fuel-based generators. Four distinct demand response models-exponential, hyperbolic, logarithmic, and critical peak pricing (CPP)-are developed, each reflecting a different price elasticity of demand.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
Power quality (PQ) disturbances, such as voltage sags, are significant issues that can lead to damage in electrical equipment and system downtime. Detecting and classifying these disturbances accurately is essential for maintaining reliable power systems. This paper introduces a novel approach to voltage sag analysis by employing wavelet packet analysis combined with energy-based feature extraction to enhance PQ monitoring.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Ocean Environment Institute, Oceanic Consulting and Trading, Seoul, Republic of Korea.
This study simulated the dispersion of Cs in the North Pacific using a Lagrangian particle model, incorporating basin-wide atmospheric deposition and direct release from the Fukushima accident. Three experiments examined the impact of vertical diffusion and velocity on dispersion behavior. EXP01 and EXP02 assumed zero vertical velocity with different vertical diffusion coefficients (1 × 10 and 2 × 10 m/s, respectively), while EXP03 used a 3-day average vertical velocity and the same diffusion coefficient as EXP01.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Institute of Industrial Science (IIS), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, 277-8575, Chiba, Japan.
During the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 11, 2011, radionuclides such as tritium were released into the environment across Japan, obscuring the natural background signal of tritium in precipitation. This anthropogenic component was rapidly washed out by precipitation according to measurements in Japan. However, the impact of the accident on the natural tritium-based estimation of water system transit times in Fukushima and other prefectures in Japan remains uncertain.
View Article and Find Full Text PDFMutat Res Rev Mutat Res
January 2025
Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.
Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!