The increasing prevalence of infections caused by antibiotic-resistant bacteria is a global healthcare crisis. Understanding the spread of resistance is predicated on the surveillance of antibiotic resistance genes within an environment. Bioinformatics and artificial intelligence (AI) methods applied to metagenomic sequencing data offer the capacity to detect known and infer yet-unknown resistance mechanisms, and predict future outbreaks of antibiotic-resistant infections. Machine learning methods, in particular, could revive the waning antibiotic discovery pipeline by helping to predict the molecular structure and function of antibiotic resistance compounds, and optimising their interactions with target proteins. Consequently, AI has the capacity to play a central role in guiding antibiotic stewardship and future clinical decision-making around antibiotic resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mib.2023.102305 | DOI Listing |
Ann Clin Microbiol Antimicrob
January 2025
Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
Proteus mirabilis (P. mirabilis) is one of the most important causative pathogens associated with complicated urinary tract infections with a 20% incidence. For epidemiological determinations, several phenotypic and molecular typing methods have been implicated.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.
This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.
In this study, we evaluated the combined effect between MLE-15, a modular lytic enzyme composed of four building blocks, and reline, a natural deep eutectic solvent. The bioinformatic analysis allowed us to determine the spatial architecture of MLE-15, whose components were bactericidal peptide cecropin A connected via a flexible linker to the cell wall binding domain (CBD) of mesophilic 201ϕ2 - 1 endolysin and catalytic domain (EAD) of highly thermostable Ph2119 endolysin. The modular enzyme showed high thermostability with the melting temperature of 93.
View Article and Find Full Text PDFJ Infect Public Health
January 2025
Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. Electronic address:
Background: Nontuberculous mycobacteria (NTM) are emerging pathogens responsible for increasing skin and soft tissue infections (SSTIs) globally. However, the diagnosis and treatment of NTM SSTIs face significant challenges due to the lack of standardized guidelines. This study reviewed the clinical characteristics, diagnostic challenges, and treatment outcomes of NTM SSTIs in a large cohort from a tertiary referral center in Beijing, China.
View Article and Find Full Text PDFBioorg Chem
January 2025
CSIR- Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
The expanding prevalence of microbial resistance to conventional treatments has triggered a race to develop alternative/improved strategies to combat drug-resistant microorganisms in an efficient manner. Here, the lethal impact of the biosynthesized gold nanoparticles (AuNPs) against multi-drug resistant (MDR) bacteria has been elucidated. AuNPs, synthesized from the extracts of the fruit, leaf and peel of the Citrus maxima plant, were physicochemically characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), electron microscopy and spectroscopic techniques not only confirmed the production of AuNPs of size below 100 nm but also identified the phytochemicals adsorbed onto the surface of NPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!