A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rational engineering of glycosaminoglycan-based Dickkopf-1 scavengers to improve bone regeneration. | LitMetric

Rational engineering of glycosaminoglycan-based Dickkopf-1 scavengers to improve bone regeneration.

Biomaterials

Division of Endocrinology, Diabetes and Bone Diseases & Center for Healthy Aging, Department of Medicine III, Technische Universität Dresden Medical Center, Fetscherstraße 74, D-01307, Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, D-01307, Dresden, Germany. Electronic address:

Published: June 2023

The WNT signaling pathway is a central regulator of bone development and regeneration. Functional alterations of WNT ligands and inhibitors are associated with a variety of bone diseases that affect bone fragility and result in a high medical and socioeconomic burden. Hence, this cellular pathway has emerged as a novel target for bone-protective therapies, e.g. in osteoporosis. Here, we investigated glycosaminoglycan (GAG) recognition by Dickkopf-1 (DKK1), a potent endogenous WNT inhibitor, and the underlying functional implications in order to develop WNT signaling regulators. In a multidisciplinary approach we applied in silico structure-based de novo design strategies and molecular dynamics simulations combined with synthetic chemistry and surface plasmon resonance spectroscopy to Rationally Engineer oligomeric Glycosaminoglycan derivatives (GAG) with improved neutralizing properties for DKK1. In vitro and in vivo assays show that the GAG modification to obtain GAG translated into increased WNT pathway activity and improved bone regeneration in a mouse calvaria defect model with critical size bone lesions. Importantly, the developed GAG outperformed polymeric high-sulfated hyaluronan (sHA3) in enhancing bone healing up to 50% due to their improved DKK1 binding properties. Thus, rationally engineered GAG variants may represent an innovative strategy to develop novel therapeutic approaches for regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2023.122105DOI Listing

Publication Analysis

Top Keywords

bone regeneration
8
wnt signaling
8
bone
7
gag
6
wnt
5
rational engineering
4
engineering glycosaminoglycan-based
4
glycosaminoglycan-based dickkopf-1
4
dickkopf-1 scavengers
4
scavengers improve
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!