Efficient control of integrated light sources is crucial to advancing practical applications of nanophotonics. Despite the success of microlasers, their sophisticated nanostructures are not applicable in nanolasers. The situation for bottom-up-synthesized nanolasers becomes more challenging due to the constraints of fixed cavity shapes and fragile material stability. Here, the physics of exceptional points (EPs) is employed, and a strategy is demonstrated to precisely tune the lasing actions in lead halide perovskite nanorods. By placing a nanoparticle to the boundary of a square nanocavity, it is shown that EPs regularly and controllably emerge as a function of the nanoparticle position. Consequently, both the internal lasing actions and their far-field radiation can be completely reversed with a tiny displacement of <100 nm. The new strategy for controlling lasing actions in nanocavities is confirmed with numerical simulations and lasing experiments. This research can also bring new avenues for ultrasensitive position sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202300344 | DOI Listing |
We report lasing action in a femtosecond-laser-inscribed waveguide in thulium-doped barium-gallium-germanium oxide (BGG) glass. A laser cavity was assembled with this waveguide that provided a single-mode output of 62 mW when pumped at 1.6 µm.
View Article and Find Full Text PDFThe emission of N lasing at 391 nm from 800 nm femtosecond laser filament in air at 1 atm presents significant challenges due to the quenching effect induced by oxygen molecules. We introduce a simple technique for the 391 nm N lasing emission induced by a corona electric field-assisted femtosecond filament in air. This technique greatly addresses the challenge of exciting a 391 nm lasing from 800 nm femtosecond laser filament in air at 1 atm.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, USA.
The ultimate limit for laser miniaturization would be achieving lasing action in the lowest-order cavity mode within a device volume of ≤(λ/2n), where λ is the free-space wavelength and n is the refractive index. Here we highlight the equivalence of localized surface plasmons and surface plasmon polaritons within resonant systems, introducing nanolasers that oscillate in the lowest-order localized surface plasmon or, equivalently, half-cycle surface plasmon polariton. These diffraction-limited single-mode emitters, ranging in size from 170 to 280 nm, harness strong coupling between gold and InGaAsP in the near-infrared (λ = 1,000-1,460 nm), away from the surface plasmon frequency.
View Article and Find Full Text PDFGeSn alloy has emerged as an attractive active material for Si-based mid-infrared (MIR) lasers due to its direct bandgap nature at higher Sn concentrations. Here, we report on an optically-pumped GeSn MIR lasers based on planar slab waveguide with a top Si ridge structure. The inclusion of 10% Sn transforms the GeSn active layer into a direct bandgap material.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Applied Physics, Aalto University School of Science, Espoo, Finland.
Photonic modes exhibiting a polarization winding akin to a vortex possess an integer topological charge. Lasing with topological charge 1 or 2 can be realized in periodic lattices of up to six-fold rotational symmetry-higher order charges require symmetries not compatible with any two-dimensional Bravais lattice. Here, we experimentally demonstrate lasing with topological charges as high as -5, +7, -17 and +19 in quasicrystals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!