Background: Mycale cecilia is an abundant Eastern Tropical Pacific sponge living in a wide variety of habitats, including coral reefs where it may directly interact with corals. It is also known to possess secondary metabolites of pharmacological value. These aspects highlight the importance of having a better understanding of its biology, and genetic and population diversity.
Methods And Results: In the present study, we isolated and characterized twelve novel microsatellite loci by Illumina MiSeq sequencing. The loci were tested in 30 specimens collected from two coral reef localities (La Paz, Baja California Sur and Isabel Island, Nayarit) from the Mexican Pacific using M13(-21) labeling. All loci were polymorphic, with two to nine alleles per locus. Expected heterozygosities varied from 0.616 to 0.901. Eleven loci were tested and successfully amplified in M. microsigmatosa from the Gulf of Mexico.
Conclusion: Here we report the first microsatellite loci developed for a sponge species from the Eastern Pacific coast. These molecular markers will be used for population genetic studies of M. cecilia, and potentially in other congeneric species; particularly in vulnerable marine areas that require protection, such as coral reefs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209218 | PMC |
http://dx.doi.org/10.1007/s11033-023-08320-9 | DOI Listing |
PeerJ
January 2025
Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, Guangxi, China.
Background: var. is a variety in the section of the genus of the family Theaceae which is native to Fangchenggang, Guangxi, China. To date, the genetic diversity and structure of this variety remains to be understood.
View Article and Find Full Text PDFInsects
January 2025
Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
To date, no study has been conducted to investigate the diversity in honeybee populations of in the Czech Republic. Between 2022 and 2023, worker bees were collected from colonies distributed throughout the Czech Republic in 77 districts, and their genetic differences were examined using 22 microsatellite loci. The samples were obtained from hives ( = 3647) and through the process of capture on flowers ( = 553).
View Article and Find Full Text PDFGenes (Basel)
January 2025
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
Background/objectives: The Pacific abalone originated in cold waters and is an economically important aquaculture shellfish in China. Our goal was to clarify the current status of the genetic structure of Pacific abalone in China.
Methods: In this study, eighteen polymorphic EST-SSR loci were successfully developed based on the hemolymph transcriptome data of Pacific abalone, and thirteen highly polymorphic EST-SSR loci were selected for the genetic variation analysis of the six populations collected.
Animals (Basel)
January 2025
Faculty of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan 48513, Republic of Korea.
Microsatellite markers are widely used in aquaculture for genetic analysis and breeding programs, but challenges such as segregation distortion and allelic instability can impact their effectiveness in parentage verification and inheritance studies. This study evaluated 15 microsatellite loci in seven experimental olive flounder () families bred through 1:1 full-sibling crosses, assessing their utility for accurate parentage and inheritance stability. Parentage assignments were conducted within an expanded pool of 647 candidate parents (including the actual 14 parents), encompassing both closely related and moderately distant individuals.
View Article and Find Full Text PDFAssessments of genetic diversity, structure, history, and effective population size ( ) are critical for the conservation of imperiled populations. The lesser prairie-chicken () has experienced declines due to habitat loss, degradation, and fragmentation in addition to substantial population fluctuations with unknown effects on genetic diversity. Our objectives were to: (i) compare genetic diversity across three temporally discrete sampling periods (2002, 2007-2010, and 2013-2014) that are characterized by low or high population abundance; (ii) examine genetic diversity at lek and lek cluster spatial scales; (ii) identify potential bottlenecks and characterize genetic structure and relatedness; and (iii) estimate the regional .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!