Purpose: Lung cancer in never-smokers (LCINS) is the seventh leading cause of cancer, and exposure to cooking fumes has recently emerged as a potential risk factor. This systematic review is the first to summarize and evaluate the relationship between exposure to cooking fumes and the risk of LCINS.
Methods: This study conducted an online literature search of PubMed, CINAHL, and PsychInfo databases. Inclusion criteria were original research articles published in English, that assessed the relationship between exposure to cooking fumes and the risk of lung cancer between 1 January 2012 and 6 December 2022, and that included never-smokers.
Results: Thirteen case-control studies and three prospective cohort studies, focusing mostly on women with LCINS, met the inclusion criteria. Seven case-control studies reported an association between exposure to cooking oil fumes and an increased risk of LCINS. Two case-control studies found that using a fume extractor was associated with a decreased risk of LCINS. In other case-control studies, coal use was linked to an increased risk of LCINS, and participants who did not use a ventilator in their kitchens had a higher risk for LCINS. Poor ventilation [Adjusted Hazard Ratio (AHR) = 1.49; 95% CI: 1.15, 1.95] and poor ventilation in combination with coal use (AHR = 2.03; 95% CI: 1.35, 3.05) were associated with an increased risk for LCINS in one prospective cohort study.
Conclusion: The evidence reviewed underscores the need to develop culturally-tailored interventions that improve access to affordable and clean fuel through engaging relevant stakeholders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10552-023-01686-y | DOI Listing |
Int J Environ Res Public Health
January 2025
Environmental Epidemiology Team, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency (UKHSA), Didcot OX11 0RQ, UK.
Carbon monoxide (CO) is a toxic gas, and faulty gas appliances or solid fuel burning with incomplete combustion are possible CO sources in households. Evaluating household CO exposure models and measurement studies is key to understanding where CO exposures may result in adverse health outcomes. This assists the assessment of the burden of disease in high- and middle-income countries and informs public health interventions in higher-risk environments.
View Article and Find Full Text PDFSci Total Environ
January 2025
NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal.
Clean air is a requirement for life, and the quality of indoor air is a health determinant since people spend most of their daily time indoors. The aim of this study was to systematically review the available evidence regarding the sources, determinants and concentrations of indoor air pollutants in a set of scenarios under study in K-HEALTHinAIR project. To this end, a systematic review was performed to review the available studies published between the years 2013-2023, for several settings (schools, homes, hospitals, lecture halls, retirement homes, public transports and canteens), conducted in Europe, where sources and determinants of the indoor pollutants concentrations was assessed.
View Article and Find Full Text PDFInt J Circumpolar Health
December 2025
Department of Chemistry, Carleton University, Ottawa, ON, Canada.
Rates of respiratory tract infections for children living in remote First Nations communities in the Sioux Lookout Zone in Northwestern Ontario are elevated and associated with poor indoor environmental quality including high exposures to endotoxin and serious dampness and mould damage. The studies also revealed a high prevalence of cigarette smoking and most houses have wood stoves, of variable quality. Depending on structure, polycyclic aromatic hydrocarbons (PAH) are carcinogens, immunotoxins and/or inflammatory mediators that are byproducts of the incomplete combustion of organic materials.
View Article and Find Full Text PDFToxics
January 2025
Masonic Cancer Center, Division of Pediatric Epidemiology and Clinical Research, University of Minnesota, Minneapolis, MN 55455, USA.
Heterocyclic aromatic amines (HAAs), formed during the cooking of meat, are potential human carcinogens, underscoring the need for long-lived biomarkers to assess exposure and cancer risk. Frequent consumption of well-done meats containing 2-amino-1-methyl-6-phenylimidazo[4,5-]pyridine (PhIP), a prevalent HAA that is a prostatic carcinogen in rodents and DNA-damaging agent in human prostate cells, has been linked to aggressive prostate cancer (PC) pathology. African American (AA) men face nearly twice the risk for developing and dying from PC compared to White men.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Centre for Health Data Science, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, UK.
This paper provides an overview of the INGENIOUS (UnderstandING the sourcEs, traNsformations and fates of IndOor air pollUtantS) project, aiming to better understand air pollution in homes. Although our homes are the microenvironment in which we spend most of our time, we know relatively little about the sources, transformation processes and fates of indoor air pollutants, or our exposure to them. INGENIOUS aims to address this knowledge gap by delivering: an indoor emissions inventory for UK homes; comprehensive air pollutant measurements in 310 homes in Bradford using a combination of low cost-sensors and more advanced air quality instrumentation; an analysis of the impact of indoor air pollution on outdoor air quality and using mobile measurements; insight into future indoor air quality using detailed air pollution models; identification of indoor air pollutants that warrant further toxicological study; and better understanding of the barriers and facilitators for behaviour that drives improved indoor air quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!